SIEMENS

MC75 Siemens Cellular Engine

Version: 01.001

MC75_HD_V01.001 DocID:

Document Name: MC75 Hardware Interface Description

Version: **01.001**

Date: **June 02, 2005**

Docld: MC75_HD_V01.001

Status: Confidential / Released

General note

Product is deemed accepted by Recipient and is provided without interface to Recipient's products. The Product constitutes pre-release version and code and may be changed substantially before commercial release. The Product is provided on an "as is" basis only and may contain deficiencies or inadequacies. The Product is provided without warranty of any kind, express or implied. To the maximum extent permitted by applicable law, Siemens further disclaims all warranties, including without limitation any implied warranties of merchantability, fitness for a particular purpose and noninfringement of third-party rights. The entire risk arising out of the use or performance of the Product and documentation remains with Recipient. This Product is not intended for use in life support appliances, devices or systems where a malfunction of the product can reasonably be expected to result in personal injury. Applications incorporating the described product must be designed to be in accordance with the technical specifications provided in these guidelines. Failure to comply with any of the required procedures can result in malfunctions or serious discrepancies in results. Furthermore, all safety instructions regarding the use of mobile technical systems, including GSM products, which also apply to cellular phones must be followed. Siemens AG customers using or selling this product for use in any applications do so at their own risk and agree to fully indemnify Siemens for any damages resulting from illegal use or resale. To the maximum extent permitted by applicable law, in no event shall Siemens or its suppliers be liable for any consequential, incidental, direct, indirect, punitive or other damages whatsoever (including, without limitation, damages for loss of business profits, business interruption, loss of business information or data, or other pecuniary loss) arising out the use of or inability to use the Product, even if Siemens has been advised of the possibility of such damages. Subject to change without notice at any time.

Copyright

Transmittal, reproduction, dissemination and/or editing of this document as well as utilization of its contents and communication thereof to others without express authorization are prohibited. Offenders will be held liable for payment of damages. All rights created by patent grant or registration of a utility model or design patent are reserved.

Copyright © Siemens AG 2005

Contents

0	Doc	ument History	7
1	Intro	oduction	11
	1.1	Related Documents	11
	1.2	Terms and Abbreviations	
	1.3	Type Approval	
	1.4	Safety Precautions	
2	Proc	luct Concept	19
	2.1	Key Features at a Glance	19
	2.2	MC75 System Overview	
	2.3	Circuit Concept	
3	App	lication Interface	24
	3.1	Operating Modes	25
	3.2	Power Supply	27
		3.2.1 Minimizing Power Losses	
		3.2.2 Measuring the Supply Voltage V _{BATT+}	
		3.2.3 Monitoring Power Supply by AT Command	
	3.3	Power Up / Power Down Scenarios	29
		3.3.1 Turn on MC75	
		3.3.1.1 Turn on MC75 Using Ignition Line IGT	
		3.3.1.2 Turn on MC75 Using the VCHARGE Signal	
		3.3.1.3 Reset MC75 via AT+CFUN Command	
		3.3.1.4 Reset or Turn off MC75 in Case of Emergency	
		3.3.2 Turn off MC75	
		3.3.2.1 Turn off MC75 Using AT Command	
		3.3.2.2 Leakage Current in Power Down Mode	
		3.3.3 Automatic Shutdown	
		3.3.3.1 Temperature Dependent Shutdown	
		3.3.3.2 Temperature Control during Emergency call	
		3.3.3.3 Undervoltage Shutdown if Battery NTC is Present	
		3.3.3.4 Undervoltage Shutdown if no Battery NTC is Present	
		3.3.3.5 Overvoltage Shutdown	37 37
	3.4	Automatic EGPRS/GPRS Multislot Class Change	
	3.5	Charging Control	
	5.5	3.5.1 Hardware Requirements	30
		3.5.2 Software Requirements	
		3.5.3 Battery Pack Requirements	
		3.5.4 Batteries Recommended for Use with MC75	
		3.5.5 Charger Requirements	
		· ·	
		3.5.6 Implemented Charging Technique	
	0.0	3.5.7 Operating Modes during Charging	
	3.6	Summary of State Transitions (Except SLEEP Mode)	
	3.7	RTC Backup	
	3.8	SIM Interface	
	3.9	Serial Interface ASC0	
		Serial Interface ASC1	
	3.11	USB Interface	
		3.11.1 Installing the USB Modem Driver	
	3.12	I ² C Interface	53
	3.13	SD Memory Card Interface	55

SIEMENS

	3.14	Audio Interfaces	
		3.14.1 Speech Processing	58
		3.14.2 Microphone Circuit	
		3.14.2.1 Single-ended Microphone Input	
		3.14.2.2 Differential Microphone Input	
		3.14.3 Loudspeaker Circuit	
		3.14.4 Digital Audio Interface DAI	
	3.15	Control Signals	
		3.15.1 Synchronization Signal	
		3.15.2 Using the SYNC Pin to Control a Status LED	65
		3.15.3 Behavior of the /RING0 Line (ASC0 Interface only)	
4	Ante	enna Interface	67
	4.1	Antenna Installation	67
	4.2	Antenna Pad	69
		4.2.1 Suitable Cable Types	
	4.3	Antenna Connector	70
5	Elec	trical, Reliability and Radio Characteristics	74
	5.1	Absolute Maximum Ratings	
	5.2	Operating Temperatures	
	5.3	Pin Assignment and Signal Description	
	5.4	Power Supply Ratings	
	5.5 5.6	Electrostatic Discharge	
		•	
6		hanics	
	6.1	Mechanical Dimensions of MC75	
	6.2	Mounting MC75 to the Application Platform	
	6.3	Board-to-Board Application Connector	89
7	Sam	ple Application	92
8	Refe	erence Approval	
	8.1	Reference Equipment for Type Approval	94
	8.2	Compliance with FCC Rules and Regulations	95
9	Арр	endix	
	9.1	List of Parts and Accessories	
	9.2	Fasteners and Fixings for Electronic Equipment	
		9.2.1 Fasteners from German Supplier ETTINGER GmbH	
	9.3	Data Sheets of Recommended Batteries	101

Tables

Table 1: Overview of operating modes	25
Table 2: Temperature dependent behavior	36
Table 3: Specifications of battery packs suitable for use with MC75	40
Table 4: Comparison Charge-only and Charge mode	42
Table 5: AT commands available in Charge-only mode	
Table 6: State transitions of MC75 (except SLEEP mode)	
Table 7: Signals of the SIM interface (board-to-board connector)	
Table 8: DCE-DTE wiring of ASC0	
Table 9: DCE-DTE wiring of ASC1	
Table 10: SD card interface	
Table 11: Overview of DAI pin functions	
Table 12: Return loss in the active band	
Table 13: Product specifications of U.FL-R-SMT connector	
Table 13: I found specifications of 0.FE-R-SMT connector and recommended plugs	
Table 14: Material and linish of 0.1 E-13-5MT connector and recommended plugs	
Table 16: Absolute maximum ratings under non-operating conditions	
Table 17: Operating temperatures	
Table 18: Signal description	
Table 19: Power supply ratings	81
Table 20: Current consumption during Tx burst for GSM 850MHz and GSM 900MHz	82
Table 21: Current consumption during Tx burst for GSM 1800MHz and GSM 1900MHz	
Table 22: Measured electrostatic values	
Table 23: Summary of reliability test conditions	
Table 24: Technical specifications of Molex board-to-board connector	
Table 25: List of parts and accessories	
Table 26: Molex sales contacts (subject to change)	
Table 27: Hirose sales contacts (subject to change)	97
Figures	
Figure 1: MC75 system overview	
Figure 2: MC75 block diagram	
Figure 3: Power supply limits during transmit burst	28
Figure 4: Position of the reference points BATT+ and GND	28
Figure 5: Power-on with operating voltage at BATT+ applied before activating IGT	30
Figure 6: Power-on with IGT held low before switching on operating voltage at BATT+	31
Figure 7: Signal states during turn-off procedure	34
Figure 8: Battery pack circuit diagram	
Figure 9: RTC supply from capacitor	
Figure 10: RTC supply from rechargeable battery	
Figure 11: RTC supply from non-chargeable battery	
Figure 12: Serial interface ASC0	
Figure 13: Serial interface ASC1	49
Figure 14: USB circuit	
Figure 15: I2C interface connected to VCC of application	53
Figure 16: I2C interface connected to VEXT line of MC75	
Figure 17: SD card interface (example with power supply from module's VEXT line)	
Figure 18: Audio block diagram	
Figure 19: Single ended microphone input	
Figure 20: Differential microphone input	
Figure 21: Line input configuration with OpAmp	
CONTRACT OF THE PROPERTY OF THE PROPERTY WITH CHARLEST	าวเ

MC75 Hardware Interface Description Confidential / Released

SIEMENS

Figure 22: Differential loudspeaker configuration	61
Figure 23: Single ended loudspeaker configuration	
Figure 24: PCM interface application	
Figure 25: PCM timing	
Figure 26: SYNC signal during transmit burst	
Figure 27: LED Circuit (Example)	
Figure 28: Incoming voice/fax/data call	
Figure 29: URC transmission	
Figure 30: Never use antenna connector and antenna pad at the same time	
Figure 31: Restricted area around antenna pad	
Figure 32: Mechanical dimensions of U.FL-R-SMT connector	
Figure 33: U.FL-R-SMT connector with U.FL-LP-040 plug	
Figure 34: U.FL-R-SMT connector with U.FL-LP-066 plug	
Figure 35: Specifications of U.FL-LP-(V)-040(01) plug	72
Figure 36: Pin assignment (component side of MC75)	75
Figure 37: MC75 – top view	86
Figure 38: Dimensions of MC75	87
Figure 39: Molex board-to-board connector 52991-0808 on MC75	90
Figure 40: Mating board-to-board connector 53748-0808 on application	
Figure 41: MC75 sample application (draft)	
Figure 42: Reference equipment for Type Approval	
Figure 43: Lithium Ion battery from VARTA	
Figure 44: Lithium Polymer battery from VARTA	
I Igaro II. Entrianti i divinoi dattory non vitti ti ti ti i i i i i i i i i i i i	

0 Document History

Preceding document: "MC75 Hardware Interface Description" Version 00.494 New document: "MC75 Hardware Interface Description" Version **01.001**

Chapter	What is new
3.14.4	New chapter: Digital Audio Interface DAI
3.15.3	New chapter: Behavior of the /RING0 Line (ASC0 Interface only)
3.15.4	New chapter: PWR_IND Signal
5.4	Added new table "Current consumption during transmit burst for frequency bands GSM 180MHz and GSM 1900MHz".

Preceding document: "MC75 Hardware Interface Description" Version 00.436 New document: "MC75 Hardware Interface Description" Version 00.494

Chapter	What is new
2.1, 3.3.1.4, 3.6 5.3	Modified description of EMERG_RST line: EMERG_RST and additional activation of IGT will reset MC75. EMERG_RST without activation of IGT will switch MC75 off.
3.5.4	Updated recommended battery specifications.
3.3.3.5	Further details on overvoltage shutdown.
5.2	Added remark on temperature tolerances.
5.4	Changed table "Current consumption during transmit burst".

Preceding document: "MC75 Hardware Interface Description" Version 00.425 New document: "MC75 Hardware Interface Description" Version 00.436

Chapter	What is new
Throughout manual	IGT line needs to be driven low for at least 400ms
3.1	New chapter: Operating Modes
3.3.1	Added remarks on different operating modes.
3.3.3.3	Added remark on shutdown threshold in IDLE mode.
3.6	New chapter: Summary of State Transitions (Except SLEEP Mode)

Preceding document: "MC75 Hardware Interface Description" Version 00.327 New document: "MC75 Hardware Interface Description" Version 00.425

Chapter	What is new
2.1	Added 7-bit addressing to list of I ² C features.
3.5.2	New chapter to describe requirements to control end of charging.
3.5.7	Added remarks on how to switch the module off when in Charging-only mode and how to switch to other operating modes. No automatic shutdown in Charge-only mode. Updated list of AT commands.
3.12	Added 7-bit addressing and remark on AT^SSPI command.
3.15.1	Updated forward time of SYNC signal during transmit burst.
5.4	Updated Table 20.

Preceding document: "MC75 Hardware Interface Description" Version 00.241 New document: "MC75 Hardware Interface Description" Version 00.327

Chapter	What is new
3.2.1	Added description for undervoltage shutdown in IDLE and SLEEP mode.
3.3.3.5	Orderly shutdown in case of overvoltage - added maximum voltage value.
5.4	Added table "Power supply ratings".
6.1	Updated Figure 38.

Preceding document: "MC75 Hardware Interface Description" Version 00.190 New document: "MC75 Hardware Interface Description" Version 00.241

Chapter	What is new
2.1	Corrected module's weight.
3.5.6	Corrected current value in case of undervoltage charging.
3.5.7	Removed AT^SMSO from list of AT commands supported in Charge-only mode.
3.8	Added specification of speed parameters of SIM interface
3.14	Corrected figure "Audio block diagram".
3.14.4	Deleted description of the DAI.
4.1	Corrected figure "Never use antenna connector and antenna pad at the same time".
4.2	Added notes on soldering.
5.1	Added conditions for absolute maximum ratings.
5.4	New chapter: Power Supply Ratings
8.1	Changed figure "Reference equipment for type approval"
8.2	Added further notes.

Preceding document: "MC75 Hardware Interface Description" Version 00.111 New document: "MC75 Hardware Interface Description" Version 00.190

Chapter	What is new
3.5.7	Described effect of AT^SMSO during Charge-only mode.
3.14.2	Corrected several parameters in figures.
3.15	More detailed description of AT^SSYNC command.
8.2	Changed antenna gain and FCC identifier.

Preceding document: "MC75 Hardware Interface Description" Version 00.02 New document: "MC75 Hardware Interface Description" Version 00.111

Chapter	What is new
3.2.2 / 3.2.3	Added description of how to measure V _{BATT+} .
3.3.3.5	Orderly shutdown in case of overvoltage (description is preliminary)
3.5.3 / 3.5.4 9.3	Updated battery requirements. Added description of VARTA batteries. Added data sheets of VARTA batteries.
3.11.1	Added info about usbser.sys file.
3.14.2	Added filter in microphone circuit figures.
3.14.3	Added figures "Differential loudspeaker configuration" and "Single ended loudspeaker configuration".
3.12	More detailed description of how to connect the I ² C interface.
5.1	Updated Table 16: Absolute maximum ratings.
6.1	Updated Figure 38.

Preceding document: "MC75 Hardware Interface Description" Version 00.02 New document: "MC75 Hardware Interface Description" Version 00.65

Chapter	What is new	
	Deleted section about limitations of MC75 Preview Release.	
Throughout manual	Supply voltage range now 3.2V – 4.3V (instead of 3.2V – 4.2V)	
2.1 / 5.3	Operating temperature specified.	
3.3.2.2	Added section Leakage Current in Power Down Mode.	
3.5	Added Lithium Polymer batteries. Updated recommended battery specifications. More detailed description of trickle charging.	
3.8	Use CCGND as separate ground line for the SIM interface.	
3.11	Corrected description and figure of USB interface. Described driver installation.	
3.14.4 / 5.3	USC4 pin marked as input.	
5.3	Added specifications of USB interface.	
5.4	Table 22: Added electrostatic values of USB and SD card interfaces.	
6.1	Updated Figure 38.	

Preceding document: "MC75 Hardware Interface Description" Version 00.02 New document: "MC75 Hardware Interface Description" Version 00.30

Chapter	What is new
Completely reappendix.	evised and updated all chapters and technical specifications. Added new chapters and

Preceding document: "MC75 Hardware Interface Description" Version 00.01 New document: "MC75 Hardware Interface Description" Version 00.02

Chapter	What is new
5	Changed description of VEXT pin. Changed description of pin 55 and renamed pin from EMERGOFF to EMERG_RST.
3.13	Corrected Figure 17: SD card interface.
7	Changed sample application.

1 Introduction

This document describes the hardware of the Siemens MC75 module that connects to the cellular device application and the air interface. It helps you quickly retrieve interface specifications, electrical and mechanical details and information on the requirements to be considered for integrating further components.

1.1 Related Documents

- [1] MC75 AT Command Set
- [2] MC75 Release Notes 01.001
- [3] DSB75 Support Box Evaluation Kit for Siemens Cellular Engines
- [4] Application 07: Rechargeable Lithium Batteries in GSM Applications
- [5] Multiplexer User's Guide (not yet available)

1.2 Terms and Abbreviations

Abbreviation	Description	
ADC	Analog-to-Digital Converter	
AGC	Automatic Gain Control	
ANSI	American National Standards Institute	
ARFCN	Absolute Radio Frequency Channel Number	
ARP	Antenna Reference Point	
ASC0 / ASC1	Asynchronous Controller. Abbreviations used for first and second serial interface of MC75	
В	Thermistor Constant	
B2B	Board-to-board connector	
BER	Bit Error Rate	
BTS	Base Transceiver Station	
CB or CBM	Cell Broadcast Message	
CE	Conformité Européene (European Conformity)	
CHAP	Challenge Handshake Authentication Protocol	
CPU	Central Processing Unit	
CS	Coding Scheme	
CSD	Circuit Switched Data	
CTS	Clear to Send	
DAC	Digital-to-Analog Converter	
DAI	Digital Audio Interface	
dBm0	Digital level, 3.14dBm0 corresponds to full scale, see ITU G.711, A-law	
DCE	Data Communication Equipment (typically modems, e.g. Siemens GSM engine)	
DCS 1800	Digital Cellular System, also referred to as PCN	
DRX	Discontinuous Reception	
DSB	Development Support Box	
DSP	Digital Signal Processor	
DSR	Data Set Ready	
DTE	Data Terminal Equipment (typically computer, terminal, printer or, for example, GSM application)	
DTR	Data Terminal Ready	
DTX	Discontinuous Transmission	
EDGE	Enhanced Data Rates for Global Evolution	
EFR	Enhanced Full Rate	
EGSM	Enhanced GSM	
EGPRS	Enhanced General Packet Radio Service	
EIRP	Equivalent Isotropic Radiated Power	

Abbreviation	Description
EMC	Electromagnetic Compatibility
ERP	Effective Radiated Power
ESD	Electrostatic Discharge
ETS	European Telecommunication Standard
FCC	Federal Communications Commission (U.S.)
FDMA	Frequency Division Multiple Access
FR	Full Rate
GMSK	Gaussian Minimum Shift Keying
GPRS	General Packet Radio Service
GSM	Global Standard for Mobile Communications
HiZ	High Impedance
HR	Half Rate
I/O	Input/Output
IC	Integrated Circuit
IMEI	International Mobile Equipment Identity
ISO	International Standards Organization
ITU	International Telecommunications Union
kbps	kbits per second
LED	Light Emitting Diode
Li-lon / Li+	Lithium-Ion
Li battery	Rechargeable Lithium Ion or Lithium Polymer battery
Mbps	Mbits per second
MMI	Man Machine Interface
МО	Mobile Originated
MS	Mobile Station (GSM engine), also referred to as TE
MSISDN	Mobile Station International ISDN number
MT	Mobile Terminated
NTC	Negative Temperature Coefficient
OEM	Original Equipment Manufacturer
PA	Power Amplifier
PAP	Password Authentication Protocol
PBCCH	Packet Switched Broadcast Control Channel
PCB	Printed Circuit Board
PCL	Power Control Level
PCM	Pulse Code Modulation
PCN	Personal Communications Network, also referred to as DCS 1800
PCS	Personal Communication System, also referred to as GSM 1900
PDU	Protocol Data Unit

Abbreviation Description PLL Phase Locked Loop PPP Point-to-point protocol **PSK** Phase Shift Keying **PSU** Power Supply Unit R&TTE Radio and Telecommunication Terminal Equipment **RAM** Random Access Memory RF Radio Frequency **RMS** Root Mean Square (value) **ROM** Read-only Memory **RTC** Real Time Clock **RTS** Request to Send Rx Receive Direction SAR Specific Absorption Rate SD Secure Digital **SELV** Safety Extra Low Voltage SIM Subscriber Identification Module **SMS Short Message Service SRAM** Static Random Access Memory TA Terminal adapter (e.g. GSM engine) **TDMA** Time Division Multiple Access Terminal Equipment, also referred to as DTE Tx **Transmit Direction UART** Universal asynchronous receiver-transmitter **URC** Unsolicited Result Code **USB** Universal Serial Bus USSD **Unstructured Supplementary Service Data VSWR** Voltage Standing Wave Ratio Phonebook abbreviations FD SIM fixdialing phonebook LD SIM last dialing phonebook (list of numbers most recently dialed) MC Mobile Equipment list of unanswered MT calls (missed calls) ME Mobile Equipment phonebook ON Own numbers (MSISDNs) stored on SIM or ME RC Mobile Equipment list of received calls SM SIM phonebook

C SIIIS

1.3 Type Approval

MC75 is designed to comply with the directives and standards listed below. Please note that the product is still in a pre-release state and, therefore, type approval and testing procedures have not yet been completed.

European directives

NAPRD.03

99/05/EC "Directive of the European Parliament and of the council of 9 March

1999 on radio equipment and telecommunications terminal equipment and the mutual recognition of their conformity", in short

referred to as R&TTE Directive 1999/5/EC

89/336/EC Directive on electromagnetic compatibility

73/23/EC Directive on electrical equipment designed for use within certain

voltage limits (Low Voltage Directive)

Standards of North American Type Approval

CFR Title 47 "Code of Federal Regulations, Part 22 and Part 24 (Telecommuni-

cations, PCS)"; US Equipment Authorization FCC

UL 60 950 "Product Safety Certification" (Safety requirements)

"Overview of PCS Type certification review board

Mobile Equipment Type Certification and IMEI control"

PCS Type Certification Review board (PTCRB), Version 3.1.0

RSS133 (Issue2) Canadian Standard

Standards of European Type Approval

3GPP TS 51.010-1 "Digital cellular telecommunications system (Phase 2); Mobile

Station (MS) conformance specification"

ETSI EN 301 511 "V7.0.1 (2000-12) Candidate Harmonized European Standard

(Telecommunications series) Global System for Mobile communications (GSM); Harmonized standard for mobile stations in the GSM 900 and DCS 1800 bands covering essential requirements under article 3.2 of the R&TTE directive (1999/5/EC) (GSM 13.11

version 7.0.1 Release 1998)"

GCF-CC "Global Certification Forum - Certification Criteria" V3.16.0

ETSI EN 301 489-1 "V1.2.1 Candidate Harmonized European Standard

(Telecommunications series) Electro Magnetic Compatibility and Radio spectrum Matters (ERM); Electro Magnetic Compatibility (EMC) standard for radio equipment and services; Part 1: Common

Technical Requirements"

ETSI EN 301 489-7 "V1.1.1 Candidate Harmonized European Standard

(Telecommunications series) Electro Magnetic Compatibility and Radio spectrum Matters (ERM); Electro Magnetic Compatibility (EMC) standard for radio equipment and services; Part 7: Specific conditions for mobile and portable radio and ancillary equipment of digital cellular radio telecommunications systems (GSM and DCS)"

EN 60 950 Safety of information technology equipment (2000)

Confidential / Released

Requirements of quality

IEC 60068 Environmental testing

DIN EN 60529 IP codes

Compliance with international rules and regulations

Manufacturers of mobile or fixed devices incorporating MC75 modules are advised to have their completed product tested and approved for compliance with all applicable national and international regulations. As a quad-band GSM/GPRS engine designed for use on any GSM network in the world, MC75 is required to pass all approvals relevant to operation on the European and North American markets. For the North American market this includes the Rules and Regulations of the Federal Communications Commission (FCC) and PTCRB, for the European market the R&TTE Directives and GCF Certification Criteria must be fully satisfied.

The FCC Equipment Authorization granted to the MC75 Siemens reference application is valid *only* for the equipment described in Section 8.1.

SAR requirements specific to portable mobiles

Mobile phones, PDAs or other portable transmitters and receivers incorporating a GSM module must be in accordance with the guidelines for human exposure to radio frequency energy. This requires the Specific Absorption Rate (SAR) of portable MC75 based applications to be evaluated and approved for compliance with national and/or international regulations.

Since the SAR value varies significantly with the individual product design manufacturers are advised to submit their product for approval if designed for portable use. For European and US markets the relevant directives are mentioned below. It is the responsibility of the manufacturer of the final product to verify whether or not further standards, recommendations or directives are in force outside these areas.

Products intended for sale on US markets

ES 59005/ANSI C95.1 Considerations for evaluation of human exposure to

Electromagnetic Fields (EMFs) from Mobile Telecommunication

Equipment (MTE) in the frequency range 30MHz - 6GHz

Products intended for sale on European markets

EN 50360 Product standard to demonstrate the compliance of mobile phones

with the basic restrictions related to human exposure to

electromagnetic fields (300MHz - 3GHz)

Note: Usage of MC75 in a fixed, mobile or portable application is not allowed without a new FCC certification.

1.4 Safety Precautions

The following safety precautions must be observed during all phases of the operation, usage, service or repair of any cellular terminal or mobile incorporating MC75. Manufacturers of the cellular terminal are advised to convey the following safety information to users and operating personnel and to incorporate these guidelines into all manuals supplied with the product. Failure to comply with these precautions violates safety standards of design, manufacture and intended use of the product. Siemens AG assumes no liability for customer's failure to comply with these precautions.

When in a hospital or other health care facility, observe the restrictions on the use of mobiles. Switch the cellular terminal or mobile off, if instructed to do so by the guidelines posted in sensitive areas. Medical equipment may be sensitive to RF energy.

The operation of cardiac pacemakers, other implanted medical equipment and hearing aids can be affected by interference from cellular terminals or mobiles placed close to the device. If in doubt about potential danger, contact the physician or the manufacturer of the device to verify that the equipment is properly shielded. Pacemaker patients are advised to keep their hand-held mobile away from the pacemaker, while it is on.

Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it cannot be switched on inadvertently. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communications systems. Failure to observe these instructions may lead to the suspension or denial of cellular services to the offender, legal action, or both.

Do not operate the cellular terminal or mobile in the presence of flammable gases or fumes. Switch off the cellular terminal when you are near petrol stations, fuel depots, chemical plants or where blasting operations are in progress. Operation of any electrical equipment in potentially explosive atmospheres can constitute a safety hazard.

Your cellular terminal or mobile receives and transmits radio frequency energy while switched on. Remember that interference can occur if it is used close to TV sets, radios, computers or inadequately shielded equipment. Follow any special regulations and always switch off the cellular terminal or mobile wherever forbidden, or when you suspect that it may cause interference or danger.

Road safety comes first! Do not use a hand-held cellular terminal or mobile when driving a vehicle, unless it is securely mounted in a holder for speakerphone operation. Before making a call with a hand-held terminal or mobile, park the vehicle.

Speakerphones must be installed by qualified personnel. Faulty installation or operation can constitute a safety hazard.

IMPORTANT!

Cellular terminals or mobiles operate using radio signals and cellular networks. Because of this, connection cannot be guaranteed at all times under all conditions. Therefore, you should never rely solely upon any wireless device for essential communications, for example emergency calls.

Remember, in order to make or receive calls, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength.

Some networks do not allow for emergency calls if certain network services or phone features are in use (e.g. lock functions, fixed dialing etc.). You may need to deactivate those features before you can make an emergency call.

Some networks require that a valid SIM card be properly inserted in the cellular terminal or mobile.

2 Product Concept

2.1 Key Features at a Glance

Feature	Implementation	
General		
Frequency bands	Quad band: GSM 850/900/1800/1900MHz	
GSM class	Small MS	
Output power (according to Release 99, V5)	Class 4 (+33dBm ±2dB) for EGSM850 Class 4 (+33dBm ±2dB) for EGSM900 Class 1 (+30dBm ±2dB) for GSM1800 Class 1 (+30dBm ±2dB) for GSM1900 Class E2 (+27dBm ± 3dB) for GSM 850 8-PSK Class E2 (+27dBm ± 3dB) for GSM 900 8-PSK Class E2 (+26dBm +3 /-4dB) for GSM 1800 8-PSK Class E2 (+26dBm +3 /-4dB) for GSM 1900 8-PSK The values stated above are maximum limits. According to Release 99, Version 5, the maximum output power in a multislot configuration may be lower. The nominal reduction of maximum output power varies with the number of uplink timeslots used and amounts to 3.0dB for 2Tx, 4.8dB for 3Tx and 6.0dB for 4Tx.	
Power supply	3.2V to 4.3V	
Power consumption	Sleep mode: max. TBD Power down mode: typically 50µA	
Operating temperature	-30°C to +65°C ambient temperature Auto switch-off at +90°C board temperature (preliminary)	
Physical	Dimensions: 33.9mm x 44.6mm x max. 3.5mm Weight: approx. 7.5g	
GSM / GPRS / EGPRS fe	eatures	
Data transfer	 GPRS Multislot Class 12 Full PBCCH support Mobile Station Class B Coding Scheme 1 – 4 EGPRS Multislot Class 10 Mobile Station Class B Modulation and Coding Scheme MCS 1 – 9 	

Feature	Implementation	
	CSD V.110, RLP, non-transparent 2.4, 4.8, 9.6, 14.4kbps USSD PPP-stack for GPRS data transfer	
SMS	 Point-to-point MT and MO Cell broadcast Text and PDU mode Storage: SIM card plus 25 SMS locations in mobile equipment Transmission of SMS alternatively over CSD or GPRS. Preferred mode can be user defined. 	
Fax	Group 3; Class 1	
Audio	Speech codecs: • Half rate HR (ETS 06.20) • Full rate FR (ETS 06.10) • Enhanced full rate EFR (ETS 06.50/06.60/06.80) • Adaptive Multi Rate AMR Speakerphone operation Echo cancellation, noise suppression DTMF 7 ringing tones	
Software		
AT commands	AT-Hayes GSM 07.05 and 07.07, Siemens AT commands for RIL compatibility (NDIS/RIL)	
Microsoft [™] compatibility	RIL / NDIS for Pocket PC and Smartphone	
SIM Application Toolkit	SAT Release 99	
TCP/IP stack	Access by AT commands	
IP addresses	IP version 6	
Firmware update	Download over serial interface ASC0 Download over SIM interface Download over USB	
Interfaces		
2 serial interfaces	 ASC0 8-wire modem interface with status and control lines, unbalanced, asynchronous 1.2kbps to 460kbps Autobauding TBD Supports RTS0/CTS0 hardware handshake and software XON/XOFF flow control. Multiplex ability according to GSM 07.10 Multiplexer Protocol. 	

Feature	Implementation	
	 ASC1 4-wire, unbalanced asynchronous interface 1.2kbps to 460kbps Autobauding TBD Supports RTS1/CTS1 hardware handshake and software XON/XOFF flow control 	
USB	Supports a USB 2.0 Full Speed (12Mbit/s) slave interface.	
I ² C	I ² C bus for 7-bit addressing and transmission rates up to 400kbps. Programmable with AT^SSPI command.	
SD card interface	Interface for SD memory card or multimedia card	
Audio	2 analog interfaces1 digital interface (PCM)	
SIM interface	Supported SIM cards: 3V, 1.8V	
Antenna	50Ohms. External antenna can be connected via antenna connector or solderable pad.	
Module interface	80-pin board-to-board connector	
Power on/off, Reset		
Power on/off	 Switch-on by hardware pin IGT Switch-off by AT command (AT^SMSO) Automatic switch-off in case of critical temperature and voltage conditions. 	
Reset	 Orderly shutdown and reset by AT command Emergency reset by hardware pins EMERG_RST and IGT. 	
Special features		
Charging	Supports management of rechargeable Lithium Ion and Lithium Polymer batteries	
Real time clock	Timer functions via AT commands	
Phonebook	SIM and phone	
Evaluation kit		
DSB75	DSB75 Evaluation Board designed to test and type approve Siemens cellular engines and provide a sample configuration for application engineering.	

2.2 MC75 System Overview

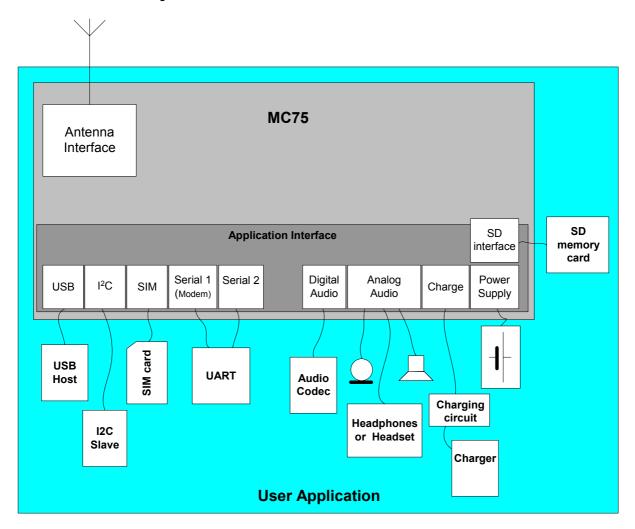


Figure 1: MC75 system overview

2.3 Circuit Concept

Figure 2 shows a block diagram of the MC75 module and illustrates the major functional components:

Baseband block:

- Digital baseband processor with DSP
- Analog processor with power supply unit (PSU)
- Flash / SRAM (stacked)
- Application interface (board-to-board connector)

RF section:

- RF transceiver
- RF power amplifier
- RF front end
- Antenna connector

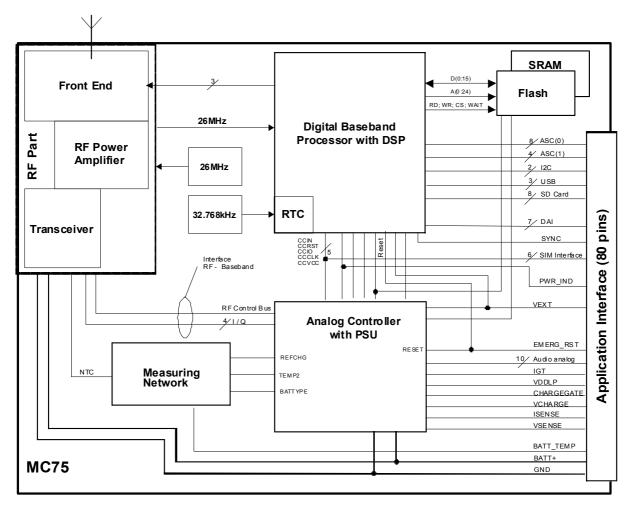


Figure 2: MC75 block diagram

3 Application Interface

MC75 is equipped with an 80-pin board-to-board connector that connects to the external application. The host interface incorporates several sub-interfaces described in the following chapters:

- Power supply see Section 3.2
- Charger interface Section 3.5
- SIM interface see Section 3.8
- Serial interface ASC0 see Section 3.9
- Serial interface ASC1 see Section 3.10
- Serial interface USB see Section 3.11.
- Serial interface I²C see Section 3.12
- SD card interface see Section 3.13
- Two analog audio interfaces see Section 3.14
- Digital audio interface (DAI) see Section 3.14 and 3.14.4
- Status and control lines: IGT, EMERG RST, PWR IND, SYNC see Table 18

3.1 Operating Modes

The table below briefly summarizes the various operating modes referred to in the following chapters.

Table 1: Overview of operating modes

Normal operation	GSM / GPRS SLEEP	Various power save modes set with AT+CFUN command. Software is active to minimum extent. If the module was registered to the GSM network in IDLE mode, it is registered and paging with the BTS in SLEEP mode, too. Power saving can be chosen at different levels: The NON-CYCLIC SLEEP mode (AT+CFUN=0) disables the AT interface. The CYCLIC SLEEP modes AT+CFUN=7 and 9 alternatively activate and deactivate the AT interfaces to allow permanent access to all AT commands.
	GSM IDLE	Software is active. Once registered to the GSM network, paging with BTS is carried out. The module is ready to send and receive.
	GSM TALK	Connection between two subscribers is in progress. Power consumption depends on network coverage individual settings, such as DTX off/on, FR/EFR/HR, hopping sequences, antenna.
	GPRS IDLE EGPRS IDLE	Module is ready for GPRS/EGPRS data transfer, but no data is currently sent or received. Power consumption depends on network settings and GPRS/EGPRS configuration (e.g. multislot settings).
	GPRS DATA EGPRS DATA	GPRS/EGPRS data transfer in progress. Power consumption depends on network settings (e.g. power control level), uplink / downlink data rates, GPRS/EGPRS configuration (e.g. used multislot settings) and reduction of maximum output power.
POWER DOWN	The Power Supply dis the circuit. Only a volta not active. Interfaces a	sending the AT^SMSO command. connects the supply voltage from the baseband part of age regulator is active for powering the RTC. Software is re not accessible. nected to BATT+) remains applied.

Airplane mode	 Airplane mode shuts down the radio part of the module, causes the module to log off from the GSM/GPRS network and disables all AT commands whose execution requires a radio connection. Airplane mode can be controlled by using the AT commands AT^SCFG and AT+CALA: With AT^SCFG=MEopMode/Airplane/OnStart the module can be configured to enter the Airplane mode each time when switched on or reset. The parameter AT^SCFG=MEopMode/Airplane can be used to switch back and forth between Normal mode and Airplane mode any time during operation. Setting an alarm time with AT+CALA followed by AT^SMSO wakes the module up into Airplane mode at the scheduled time.
Charge-only mode	Limited operation for battery powered applications. Enables charging while module is detached from GSM network. Limited number of AT commands is accessible. Charge-only mode applies when the charger is connected if the module was powered down with AT^SMSO.
Charge mode during normal operation	Normal operation (SLEEP, IDLE, TALK, GPRS IDLE, GPRS/EGPRS DATA) and charging running in parallel. Charge mode changes to Charge-only mode when the module is powered down before charging has been completed.

See Table 6 for the various options proceeding from one mode to another.

3.2 Power Supply

MC75 needs to be connected to a power supply at the B2B connector (5 pins each BATT+ and GND).

The power supply of MC75 has to be a single voltage source at BATT+. It must be able to provide the peak current during the uplink transmission.

All the key functions for supplying power to the device are handled by the power management section of the analog controller. This IC provides the following features:

- Stabilizes the supply voltages for the GSM baseband using low drop linear voltage regulators.
- Switches the module's power voltages for the power up and down procedures.
- Delivers, across the VEXT pin, a regulated voltage for an external application. This voltage is not available in Power-down mode.
- SIM switch to provide SIM power supply.

3.2.1 Minimizing Power Losses

When designing the power supply for your application please pay specific attention to power losses. Ensure that the input voltage V_{BATT+} never drops below 3.2V on the MC75 board, not even in a transmit burst where current consumption can rise to typical peaks of 2A. It should be noted that MC75 switches off when exceeding these limits. Any voltage drops that may occur in a transmit burst should not exceed 400mV.

The measurement network monitors outburst and inburst values. The drop is the difference of both values. The maximum drop (Dmax) since the last start of the module will be saved. In IDLE and SLEEP mode, the module switches off if the minimum battery voltage (V_{batt} min) is reached.

```
Example:

V_1min = 3.2V

Dmax = 0.35V
```

```
V_{batt}min = V_{l}min + Dmax

V_{batt}min = 3.2V + 0.35V = 3.55V
```

The best approach to reducing voltage drops is to use a board-to-board connection as recommended, and a low impedance power source. The resistance of the power supply lines on the host board and of a battery pack should also be considered.

Note: If the application design requires an adapter cable between both board-to-board connectors, use a flex cable as short as possible in order to minimize power losses.

Example: If the length of the flex cable reaches the maximum length of 100mm, this connection may cause, for example, a resistance of $30m\Omega$ in the BATT+ line and $30m\Omega$ in the GND line. As a result, a 2A transmit burst would add up to a total voltage drop of 120mV. Plus, if a battery pack is involved, further losses may occur due to the resistance across the battery lines and the internal resistance of the battery including its protection circuit.

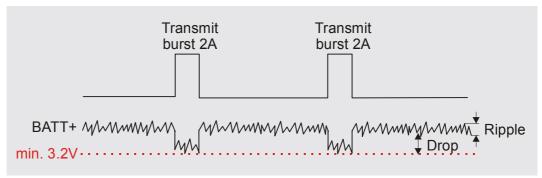


Figure 3: Power supply limits during transmit burst

3.2.2 Measuring the Supply Voltage V_{BATT+}

The reference points for measuring the supply voltage V_{BATT+} on the module are BATT+ and GND, both accessible at a capacitor located close to the board-to-board connector of the module.

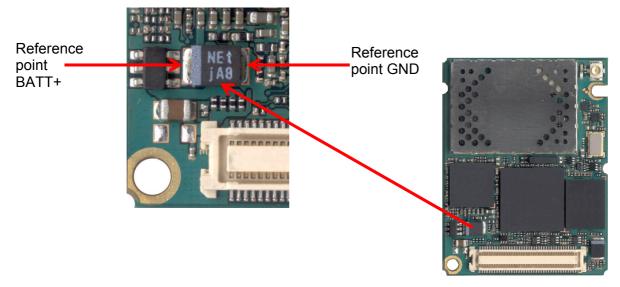


Figure 4: Position of the reference points BATT+ and GND

3.2.3 Monitoring Power Supply by AT Command

To monitor the supply voltage you can also use the AT^SBV command which returns the value related to the reference points BATT+ and GND.

The module continuously measures the voltage at intervals depending on the operating mode of the RF interface. The duration of measuring ranges from 0.5s in TALK/DATA mode to 50s when MC75 is in IDLE mode or Limited Service (deregistered). The displayed voltage (in mV) is averaged over the last measuring period before the AT^SBV command was executed.

3.3 Power Up / Power Down Scenarios

In general, be sure not to turn on MC75 while it is beyond the safety limits of voltage and temperature stated in Chapter 5. MC75 would immediately switch off after having started and detected these inappropriate conditions. In extreme cases this can cause permanent damage to the module.

3.3.1 Turn on MC75

MC75 can be started in a variety of ways as described in the following sections:

- Hardware driven start-up by IGT line: starts Normal mode or Airplane mode (see Section 3.3.1.1)
- Software controlled reset by AT+CFUN command: starts Normal or Airplane mode (see Section 3.3.1.3)
- Hardware driven start-up by VCHARGE line: starts charging algorithm and Charge-only mode (see Section 3.3.1.2)
- Wake-up from Power-down mode by using RTC interrupt: starts Airplane mode

The option whether to start into Normal mode or Airplane mode depends on the settings made with the AT^SCFG command or AT+CALA. With AT+CALA, followed by AT^SMSO the module can be configured to restart into Airplane mode at a scheduled alarm time. Switching back and forth between Normal mode and Airplane mode is possible any time during operation by using the AT^SCFG command.

After startup or mode change the following URCs indicate the module's ready state:

- "SYSSTART" indicates that the module has entered Normal mode.
- "ASYSSTART AIRPLANE MODE" indicates that the module has entered Airplane mode.
- "^SYSSTART CHARGE ONLY MODE" indicates that the module has entered the Charge-only mode.

Detailed explanations on AT^SCFG, AT+CFUN, AT+CALA and Airplane mode can be found in [1].

3.3.1.1 Turn on MC75 Using Ignition Line IGT

When the MC75 module is in Power-down mode, it can be started to Normal mode or Airplane mode by driving the IGT (ignition) line to ground. This must be accomplished with an open drain/collector driver to avoid current flowing into this pin.

The module will start up when both of the following two conditions are met:

- The supply voltage applied at BATT+ must be in the operating range.
- The IGT line needs to be driven low for at least 400ms.

Considering different strategies of host application design the figures below show two approaches to meet this requirement: The example in Figure 5 assumes that IGT is activated after BATT+ has already been applied. The example in Figure 6 assumes that IGT is held low before BATT+ is switched on. In either case, to power on the module, ensure that low state of IGT takes at least 400ms from the moment the voltage at BATT+ is available.

If configured to a fix baud rate (AT+IPR≠0), the module will send the URC "^SYSSTART" or "^SYSSTART AIRPLANE MODE" to notify that it is ready to operate. If autobauding is enabled (AT+IPR=0) there will be no notification.

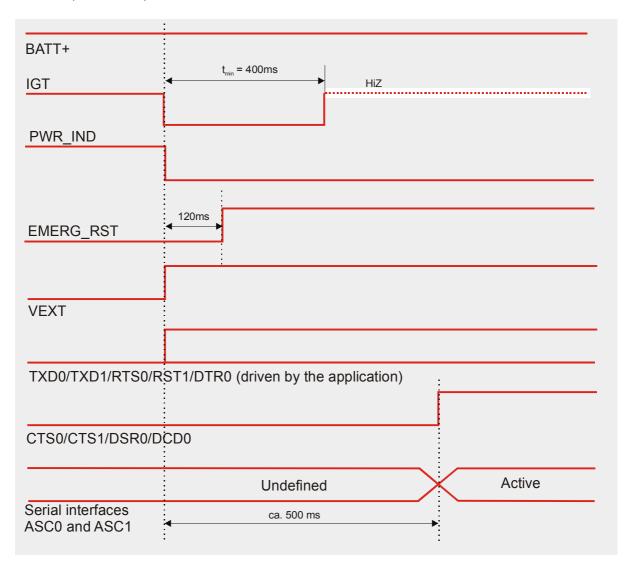


Figure 5: Power-on with operating voltage at BATT+ applied before activating IGT

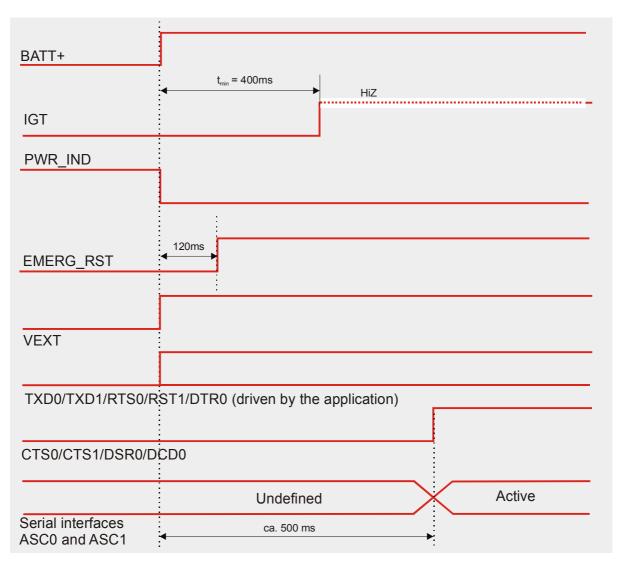


Figure 6: Power-on with IGT held low before switching on operating voltage at BATT+

3.3.1.2 Turn on MC75 Using the VCHARGE Signal

As detailed in Section 3.5.7, the charging adapter can be connected regardless of the module's operating mode.

If the charger is connected to the charger input of the external charging circuit and the module's VCHARGE pin while MC75 is off, and the battery voltage is above the undervoltage lockout threshold, processor controlled fast charging starts (see Section 3.5.6). MC75 enters a restricted mode, referred to as Charge-only mode where only the charging algorithm will be launched.

During the Charge-only mode MC75 is neither logged on to the GSM network nor are the serial interfaces fully accessible. To switch to normal operation and log on to the GSM network, the IGT line needs to be activated as described in Section 3.3.1.

3.3.1.3 Reset MC75 via AT+CFUN Command

To reset and restart the MC75 module use the command AT+CFUN. You can enter AT+CFUN=,1 or AT+CFUN=x,1, where x may be in the range from 0 to 9. See [1] for details.

If configured to a fix baud rate (AT+IPR≠0), the module will send the URC "^SYSSTART" or "^SYSSTART AIRPLANE MODE to notify that it is ready to operate. If autobauding is enabled (AT+IPR=0) there will be no notification. To register to the network SIM PIN authentication is necessary after restart.

3.3.1.4 Reset or Turn off MC75 in Case of Emergency

Caution: Use the EMERG_RST pin only when, due to serious problems, the software is not responding for more than 5 seconds. Pulling the EMERG_RST pin causes the loss of all information stored in the volatile memory. Therefore, this procedure is intended only for use in case of emergency, e.g. if MC75 does not respond, if reset or shutdown via AT command fails.

The EMERG_RST signal is available on the application interface. To control the EMERG_RST line it is recommended to use an open drain / collector driver.

The EMERG_RST line can be used to switch off or to reset the module. In any case the EMERG_RST line must be pulled to ground for ≥10ms. Then, after releasing the EMERG_RST line additional activation of IGT for 400 ms will reset the module. If IGT is not activated for 400 ms the module switches off. In this case, it can be restarted any time as described in section 3.3.1.1.

After hardware driven restart, notification via "^SYSSTART" or "^SYSSTART AIRPLANE" URC is the same as in case of restart by IGT or AT command. To register to the network SIM PIN authentication is necessary after restart.

3.3.2 Turn off MC75

MC75 can be turned off as follows:

- Normal shutdown: Software controlled by AT^SMSO command
- Automatic shutdown: Takes effect if board or battery temperature is out of range or if undervoltage or overvoltage conditions occur.

3.3.2.1 Turn off MC75 Using AT Command

The best and safest approach to powering down MC75 is to issue the AT^SMSO command. This procedure lets MC75 log off from the network and allows the software to enter into a secure state and safe data before disconnecting the power supply. The mode is referred to as Power-down mode. In this mode, only the RTC stays active.

Before switching off the device sends the following response:

^SMSO: MS OFF

OK

^SHUTDOWN

After sending AT^SMSO do not enter any other AT commands. There are two ways to verify when the module turns off:

- Wait for the URC "^SHUTDOWN". It indicates that data have been stored non-volatile and the module turns off in less than 1 second.
- Also, you can monitor the PWR_IND pin. High state of PWR_IND definitely indicates that the module is switched off.

Be sure not to disconnect the supply voltage V_{BATT+} before the URC "^SHUTDOWN" has been issued and the PWR_IND signal has gone high. Otherwise you run the risk of losing data. Signal states during turn-off are shown in Figure 7.

While MC75 is in Power-down mode the application interface is switched off and must not be fed from any other source. Therefore, your application must be designed to avoid any current flow into any digital pins of the application interface, especially of the serial interfaces. No special care is required for the USB interface which is protected from reverse current.

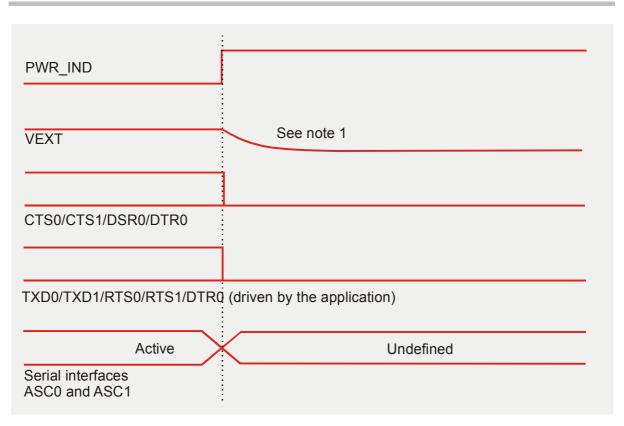


Figure 7: Signal states during turn-off procedure

Note 1: Depending on capacitance load from host application

3.3.2.2 Leakage Current in Power Down Mode

The leakage current in Power Down mode varies depending on the following conditions:

- If the supply voltage at BATT+ was disconnected and then applied again without starting up the MC75 module, the leakage current ranges between 90μA and 100μA.
- If the MC75 module is started and afterwards powered down with AT^SMSO, then the leakage current is only 50μA.

Therefore, in order to minimize the leakage current take care to start up the module at least once before it is powered down.

3.3.3 Automatic Shutdown

Automatic shutdown takes effect if

- the MC75 board is exceeding the critical limits of overtemperature or undertemperature
- the battery is exceeding the critical limits of overtemperature or undertemperature
- undervoltage or overvoltage is detected

See Charge-only mode described in section 3.5.7 for exceptions.

The automatic shutdown procedure is equivalent to the Power-down initiated with the AT^SMSO command, i.e. MC75 logs off from the network and the software enters a secure state avoiding loss of data.

Alert messages transmitted before the device switches off are implemented as Unsolicited Result Codes (URCs). The presentation of these URCs can be enabled or disabled with the two AT commands AT^SBC and AT^SCTM. The URC presentation mode varies with the condition, please see Chapters 3.3.3.1 to 3.3.3.4 for details. For further instructions on AT commands refer to [1].

3.3.3.1 Temperature Dependent Shutdown

The board temperature is constantly monitored by an internal NTC resistor located on the PCB. The NTC that detects the battery temperature must be part of the battery pack circuit as described in 3.5.3 The values detected by either NTC resistor are measured directly on the board or the battery and therefore, are not fully identical with the ambient temperature.

Each time the board or battery temperature goes out of range or back to normal, MC75 instantly displays an alert (if enabled).

• URCs indicating the level "1" or "-1" allow the user to take appropriate precautions, such as protecting the module from exposure to extreme conditions. The presentation of the URCs depends on the settings selected with the AT^SCTM write command:

AT^SCTM=1: Presentation of URCs is always enabled.

AT^SCTM=0 (default): Presentation of URCs is enabled for 15 seconds time after start-up of MC75. After 15 seconds operation, the presentation will be disabled, i.e. no alert messages can be generated.

URCs indicating the level "2" or "-2" are instantly followed by an orderly shutdown. The
presentation of these URCs is always enabled, i.e. they will be output even though the
factory setting AT^SCTM=0 was never changed.

The maximum temperature ratings are stated in Table 17. Refer to Table 2 for the associated URCs. All statements are based on test conditions according to IEC 60068-2-2 (still air).

Table 2: Temperature dependent behavior

Sending temperature alert (15s after MC75 start-up, otherwise only if URC presentation enabled)		
^SCTM_A: 1	Caution: T _{amb} of battery close to overtemperature limit.	
^SCTM_B: 1	Caution: T _{amb} of board close to overtemperature limit.	
^SCTM_A: -1	Caution: T _{amb} of battery close to undertemperature limit.	
^SCTM_B: -1	Caution: T _{amb} of board close to undertemperature limit.	
^SCTM_A: 0	Battery back to uncritical temperature range.	
^SCTM_B: 0	Board back to uncritical temperature range.	
Automatic shutdown (URC appears no matter whether or not presentation was enabled)		
^SCTM_A: 2	Alert: T_{amb} of battery equal or beyond overtemperature limit. MC75 switches off.	
^SCTM_B: 2	Alert: T _{amb} of board equal or beyond overtemperature limit. MC75 switches off.	
^SCTM_A: -2	Alert: T _{amb} of battery equal or below undertemperature limit. MC75 switches off.	
^SCTM_B: -2	Alert: T _{amb} of board equal or below undertemperature limit. MC75 switches off.	

3.3.3.2 Temperature Control during Emergency call

If the temperature limit is exceeded while an emergency call is in progress the engine continues to measure the temperature, but deactivates the shutdown functionality. If the temperature is still out of range when the call ends, the module switches off immediately (without another alert message).

3.3.3.3 Undervoltage Shutdown if Battery NTC is Present

In applications where the module's charging technique is used and an NTC is connected to the BATT_TEMP terminal, the software constantly monitors the applied voltage. If the measured battery voltage is no more sufficient to set up a call the following URC will be presented:

^SBC: Undervoltage.

The message will be reported, for example, when the user attempts to make a call while the voltage is close to the shutdown threshold of 3.2V and further power loss is caused during the transmit burst. In IDLE mode, the shutdown threshold is the sum of the module's minimum supply voltage (3.2V) and the value of the maximum voltage drop resulting from earlier calls. This means that in IDLE mode the actual shutdown threshold may be higher than 3.2V. Therefore, to properly calculate the actual shutdown threshold application manufacturers are advised to measure the maximum voltage drops that may occur during transmit bursts.

To remind the user that the battery needs to be charged soon, the URC appears several times before the module switches off.

To enable or disable the URC use the AT^SBC command. The URC will be enabled when you enter the write command and specify the current consumption of your host application. Step by step instructions are provided in [1].

3.3.3.4 Undervoltage Shutdown if no Battery NTC is Present

The undervoltage protection is also effective in applications, where no NTC connects to the BATT_TEMP terminal. Thus, you can take advantage of this feature even though the application handles the charging process or MC75 is fed by a fixed supply voltage. All you need to do is executing the write command AT^SBC=<current> which automatically enables the presentation of URCs. You do not need to specify <current>.

Whenever the supply voltage falls below the value of 3.2V the URC ^SBC: Undervoltage appears several times before the module switches off.

3.3.3.5 Overvoltage Shutdown

The overvoltage shutdown threshold is 100mV above the maximum supply voltage V_{BATT+} specified in Table 19.

When the supply voltage approaches the overvoltage shutdown threshold the module will send the following URC

^SBC: Overvoltage warning

This alert is sent once.

When the overvoltage shutdown threshold is exceeded the module will send the URC

^SBC: Overvoltage shutdown

before it shuts down cleanly.

Keep in mind that several MC75 components are directly linked to BATT+ and, therefore, the supply voltage remains applied at major parts of MC75, even if the module is switched off. Especially the power amplifier is very sensitive to high voltage and might even be destroyed.

3.4 Automatic EGPRS/GPRS Multislot Class Change

Temperature control is also effective for operation in EGPRS Multislot Class 10, GPRS Multislot Class 10 and GPRS Multislot Class 12. If the board temperature increases to the limit specified for restricted operation¹⁾ while data are transmitted over EGPRS or GPRS, the module automatically reverts:

- from EGPRS Multislot Class 10 (2Tx slots) to EGPRS Multislot Class 8 (1Tx),
- from GPRS Multislot Class 12 (4Tx slots) to GPRS Multislot Class 8 (1Tx)
- from GPRS Multislot Class 10 (2Tx slots) to GPRS Multislot Class 8 (1Tx)

This reduces the power consumption and, consequently, causes the board's temperature to decrease. Once the temperature drops to a value of 5 degrees below the limit of restricted operation, MC75 returns to the higher Multislot Class. If the temperature stays at the critical level or even continues to rise, MC75 will not switch back to the higher class.

After a transition from EGPRS Multislot Class 10 to EGPRS Multislot Class 8 a possible switchback to EGPRS Multislot Class 10 is blocked for one minute. The same applies when a transition occurs from GPRS Multislot Class 12 or 10 to GPRS Multislot Class 8.

Please note that there is not one single cause of switching over to a lower Multislot Class. Rather it is the result of an interaction of several factors, such as the board temperature that depends largely on the ambient temperature, the operating mode and the transmit power. Furthermore, take into account that there is a delay until the network proceeds to a lower or, accordingly, higher Multislot Class. The delay time is network dependent. In extreme cases, if it takes too much time for the network and the temperature cannot drop due to this delay, the module may even switch off as described in Section 3.3.3.1.

¹⁾ See Table 17 for temperature limits known as restricted operation.

3.5 Charging Control

MC75 integrates a charging management for rechargeable Lithium Ion and Lithium Polymer batteries. You can skip this chapter if charging is not your concern, or if you are not using the implemented charging algorithm.

The following sections contain an overview of charging and battery specifications. Please refer to [4] for greater detail, especially regarding requirements for batteries and chargers, appropriate charging circuits, recommended batteries and an analysis of operational issues typical of battery powered GSM/GPRS applications.

3.5.1 Hardware Requirements

MC75 has no on-board charging circuit. To benefit from the implemented charging management you are required to install a charging circuit within your application according to the Figure 41.

3.5.2 Software Requirements

Use the command AT^SBC, parameter <current>, to enter the current consumption of the host application. This information enables the MC75 module to correctly determine the end of charging and terminate charging automatically when the battery is fully charged. If the <current> value is inaccurate and the application draws a current higher than the final charge current, either charging will not be terminated or the battery fails to reach its maximum voltage. Therefore, the termination condition is defined as: final charge current (50mA) plus current consumption of the external application. If used the current flowing over the VEXT pin of the application interface (typically 2.9V) must be added, too.

The parameter <current> is volatile, meaning that the factory default (0mA) is restored each time the module is powered down or reset. Therefore, for better control of charging, it is recommended to enter the value every time the module is started.

See [1] for details on AT^SBC.

3.5.3 Battery Pack Requirements

The charging algorithm has been optimized for rechargeable Lithium batteries that meet the characteristics listed below and in Table 3. It is recommended that the battery pack you want to integrate into your MC75 application is compliant with these specifications. This ensures reliable operation, proper charging and, particularly, allows you to monitor the battery capacity using the AT^SBC command. Failure to comply with these specifications might cause AT^SBC to deliver incorrect battery capacity values.

- Li-lon or Lithium Polymer battery pack specified for a maximum charging voltage of 4.2V and a recommended capacity of 1000 to 1200mAh.
- Since charging and discharging largely depend on the battery temperature, the battery
 pack should include an NTC resistor. If the NTC is not inside the battery it must be in
 thermal contact with the battery. The NTC resistor must be connected between
 BATT TEMP and GND.
 - The B value of the NTC should be in the range: $10k\Omega \pm 5\%$ @ $25^{\circ}C$, $B_{25/85} = 3423$ K to B = 3435K \pm 3% (alternatively acceptable: $10k\Omega \pm 2\%$ @ $25^{\circ}C$, $B_{25/50} = 3370$ K \pm 3%). Please

note that the NTC is indispensable for proper charging, i.e. the charging process will not start if no NTC is present.

- Ensure that the pack incorporates a protection circuit capable of detecting overvoltage (protection against overcharging), undervoltage (protection against deep discharging) and overcurrent. Due to the discharge current profile typical of GSM applications, the circuit must be insensitive to pulsed current.
- On the MC75 module, a built-in measuring circuit constantly monitors the supply voltage.
 In the event of undervoltage, it causes MC75 to power down. Undervoltage thresholds
 are specific to the battery pack and must be evaluated for the intended model. When you
 evaluate undervoltage thresholds, consider both the current consumption of MC75 and of
 the application circuit.
- The internal resistance of the battery and the protection should be as low as possible. It is recommended not to exceed 150mΩ, even in extreme conditions at low temperature. The battery cell must be insensitive to rupture, fire and gassing under extreme conditions of temperature and charging (voltage, current).
- The battery pack must be protected from reverse pole connection. For example, the casing should be designed to prevent the user from mounting the battery in reverse orientation.
- It is recommended that the battery pack be approved to satisfy the requirements of CE conformity.

Figure 8 shows the circuit diagram of a typical battery pack design that includes the protection elements described above.

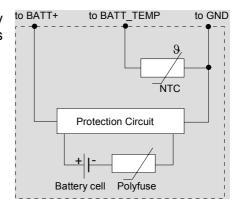


Figure 8: Battery pack circuit diagram

Table 3: Specifications of battery packs suitable for use with MC75

Battery type	Rechargeable Lithium Ion or Lithium Polymer battery	
Nominal voltage	3.6V / 3.7V	
Capacity	Recommended: 1000mAh to 1200mAh Minimum: 500mAh	
NTC	10kΩ ± 5% @ 25°C approx. 5kΩ @ 45°C approx. 26.2kΩ @ 0°C B value range: B (25/85)=3423K to B =3435K ± 3%	
Overcharge detection voltage	4.325 ± 0.025V	
Overdischarge detection voltage	2.5 ± 0.05V	
Overcurrent detection	3 ± 0.5A	
Overcurrent detection delay time	4 ~ 16ms	
Short detection delay time	50µs	
Internal resistance	<130m Ω Note: A maximum internal resistance of 150m Ω should not be exceeded even after 500 cycles and under extreme conditions.	

3.5.4 Batteries Recommended for Use with MC75

When you choose a battery for your MC75 application you can take advantage of one of the following two batteries offered by VARTA Microbattery GmbH. Both batteries meet all requirements listed above. They have been thoroughly tested by Siemens, proved to be suited for MC75, and are CE approved.

- LIP 633450A1B PCM.STB, type Lithium Ion
 This battery is listed in the standard product range of VARTA. It is incorporated in a shrink sleeve and has been chosen for integration into the reference setup submitted for Type Approval of Siemens GSM modules.
- LPP 503759CA PCM.NTC.LT50, type Lithium Polymer
 This battery has been especially designed by VARTA for use with Siemens GSM modules. It has the same properties as the above Li-lon battery, except that it is type Polymer, is smaller and comes without casing.

Specifications, construction drawings and sales contacts for both VARTA batteries can be found in Section 9.3.

3.5.5 Charger Requirements

For using the implemented charging algorithm and the reference charging circuit recommended in [4] and in Figure 41, the charger has to meet the following requirements:

Output voltage: 5.2Volts ±0.2V (stabilized voltage)

Output current: 500mA

Chargers with a higher output current are acceptable, but please consider that only 500mA will be applied when a 0.30hms shunt resistor is connected between VSENSE and ISENSE. See [4] for

further details.

3.5.6 Implemented Charging Technique

If all requirements listed above are met (appropriate external charging circuit of application, battery pack, charger, AT^SBC settings) then charging is enabled in various stages depending on the battery condition:

Trickle charging:

- Trickle charge current flows over the VCHARGE line.
- Trickle charging is done when a charger is present (connected to VCHARGE) and the battery is deeply discharged or has undervoltage. If deeply discharged (Deep Discharge Lockout at V_{BATT+}= 0...2.5V) the battery is charged with 5mA, in case of undervoltage (Undervoltage Lockout at V_{BATT+}= 2.5...3.2V) it is charged with 30mA

Software controlled charging:

- Controlled over the CHARGEGATE.
- Temperature conditions: 0°C to 45°C
- Software controlled charging is done when the charger is present (connected to VCHARGE) and the battery voltage is at least above the undervoltage threshold.
 Software controlled charging passes the following stages:
 - Power ramp: Depending on the discharge level of the battery (i.e. the measured battery voltage V_{BATT+}) the software adjusts the maximum charge current for charging the

- battery. The duration of power ramp charging is very short (less than 30 seconds).
- Fast charging: Battery is charged with constant current (approx. 500mA) until the battery voltage reaches 4.2V (approx. 80% of the battery capacity).
- Top-up charging: The battery is charged with constant voltage of 4.2V at stepwise reducing charge current until full battery capacity is reached.
- The duration of software controlled charging depends on the battery capacity and the level of discharge.

3.5.7 Operating Modes during Charging

Of course, the battery can be charged regardless of the engine's operating mode. When the GSM module is in Normal mode (SLEEP, IDLE, TALK, GPRS IDLE or GPRS DATA mode), it remains operational while charging is in progress (provided that sufficient voltage is applied). The charging process during the Normal mode is referred to as *Charge mode*.

If the charger is connected to the charger input of the external charging circuit and the module's VCHARGE pin while MC75 is in Power-down mode, MC75 goes into *Charge-only* mode.

While the charger remains connected it is not possible to switch the module off by using the AT^SMSO command or the automatic shutdown mechanism. Instead the following applies:

- If the module is in Normal mode and the charger is connected (Charge mode) the AT^SMSO command causes the module to shut down shortly and then start into the Charge-only mode.
- In Charge-only mode the AT^SMSO command is not usable.
- In Charge-only mode the module neither switches off when the battery or the module exceeds the critical limits of overtemperature or undertemperature.

In these cases you can only switch the module off by disconnecting the charger.

To proceed from Charge-only mode to another operating mode you have the following options:

- To switch from Charge-only mode to Normal mode drive the ignition line (IGT) to ground for 1 second.
- To switch from Charge-only mode to Airplane mode enter the command *AT^SCFG=MEopMode/Airplane,on*.
- If AT^SCFG=MEopMode/Airplane/OnStart, on is set, driving the ignition line (IGT) activates the Airplane mode.

Table 4: Comparison Charge-only and Charge mode

	How to activate mode	Description of mode
Charge mode	Connect charger to charger input of host application charging circuit and module's VCHARGE pin while MC75 is operating, e.g. in IDLE or TALK mode in SLEEP mode	

	How to activate mode	Description of mode
Charge-only mode	Connect charger to charger input of host application charging circuit and module's VCHARGE pin while MC75 is in Power-down mode in Normal mode: Connect charger to the VCHARGE pin, then enter AT^SMSO. NOTE: While trickle charging is in progress, be sure that the host application is switched off. If the application is fed from the trickle charge current the module might be prevented from proceeding to software controlled charging since the current would not be sufficient.	 deregistered from GSM network. Charging runs smoothly due to constant current consumption. The AT interface is accessible and allows to

Table 5: AT commands available in Charge-only mode

AT command	Use	
AT+CALA	Set alarm time, configure Airplane mode.	
AT+CCLK	Set date and time of RTC.	
AT^SBC	Query status of charger connection. Enable / disable "^SBC" URCs.	
AT^SBV	Monitor supply voltage.	
AT^SCTM	Query temperature range, enable/disable URCs to report critical temperature ranges	
AT^SCFG	Enable/disable parameters MEopMode/Airplane or MEopMode/Airplane/OnStart	

3.6 Summary of State Transitions (Except SLEEP Mode)

Table 6: State transitions of MC75 (except SLEEP mode)

The table shows how to proceed from one mode to another (grey column = present mode, white columns = intended modes)

Further mode →→→	POWER DOWN	Normal mode**)	Charge-only mode*)	Airplane mode
Present mode				
POWER DOWN mode		If AT^SCFG=MeOpMode/ Airplane/OnStart,off: IGT >400 ms at low level	Connect charger to VCHARGE	If AT^SCFG=MeOpMode/ Airplane/OnStart,on: IGT >400 ms at low level Regardless of AT^SCFG configuration: scheduled wake-up set with AT+CALA.
Normal mode**)	AT^SMSO		AT^SMSO if charger is connected	AT^SCFG=MeOpMode/ Airplane,on. If AT^SCFG=MeOpMode/ Airplane/OnStart,on: AT+CFUN=x,1 or EMERG_RST + IGT >400 ms.
Charge-only mode *)	Disconnect charger	If AT^SCFG=MeOpMode/ Airplane/OnStart,off: IGT >1s at low level		AT^SCFG=MeOpMode/ Airplane,on. If AT^SCFG=MeOpMode/ Airplane/OnStart,on: IGT >1s at low level
Airplane mode	AT^SMSO	AT^SCFG=MeOpMode/ Airplane,off	AT^SMSO if charger is connected	

See section 3.5.7 for details on the charging mode

Normal mode covers TALK, DATA, GPRS, EGPRS, IDLE and SLEEP modes

3.7 RTC Backup

The internal Real Time Clock of MC75 is supplied from a separate voltage regulator in the analog controller which is also active when MC75 is in POWER DOWN status. An alarm function is provided that allows to wake up MC75 to Airplane mode without logging on to the GSM network.

In addition, you can use the VDDLP pin on the board-to-board connector to backup the RTC from an external capacitor or a battery (rechargeable or non-chargeable). The capacitor is charged by the BATT+ line of MC75. If the voltage supply at BATT+ is disconnected the RTC can be powered by the capacitor. The size of the capacitor determines the duration of buffering when no voltage is applied to MC75, i.e. the larger the capacitor the longer MC75 will save the date and time.

A serial $1k\Omega$ resistor placed on the board next to VDDLP limits the charge current of an empty capacitor or battery.

The following figures show various sample configurations. Please refer to Table 18 for the parameters required.

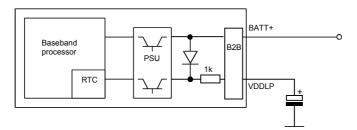


Figure 9: RTC supply from capacitor

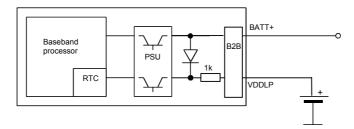


Figure 10: RTC supply from rechargeable battery

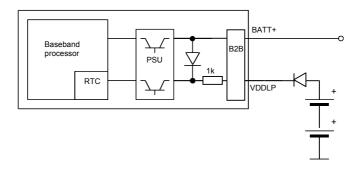


Figure 11: RTC supply from non-chargeable battery

3.8 SIM Interface

The baseband processor has an integrated SIM interface compatible with the ISO 7816 IC Card standard. This is wired to the host interface (board-to-board connector) in order to be connected to an external SIM card holder. Six pins on the board-to-board connector are reserved for the SIM interface.

The SIM interface supports 3V and 1.8V SIM cards. Please refer to Table 18 for electrical specifications of the SIM interface lines depending on whether a 3V or 1.8V SIM card is used.

The CCIN pin serves to detect whether a tray (with SIM card) is present in the card holder. Using the CCIN pin is mandatory for compliance with the GSM 11.11 recommendation if the mechanical design of the host application allows the user to remove the SIM card during operation. To take advantage of this feature, an appropriate SIM card detect switch is required on the card holder. For example, this is true for the model supplied by Molex, which has been tested to operate with MC75 and is part of the Siemens reference equipment submitted for type approval. See Chapter 8 for Molex ordering numbers.

Table 7: Signals of the SIM interface (board-to-board connector)

Signal	Description
CCGND	Separate ground connection for SIM card to improve EMC. Be sure to use this ground line for the SIM interface rather than any other ground pin or plane on the module. A design example for grounding the SIM interface is shown in Figure 41.
CCCLK	Chipcard clock, various clock rates can be set in the baseband processor.
CCVCC	SIM supply voltage.
CCIO	Serial data line, input and output.
CCRST	Chipcard reset, provided by baseband processor.
CCIN	Input on the baseband processor for detecting a SIM card tray in the holder. If the SIM is removed during operation the SIM interface is shut down immediately to prevent destruction of the SIM. The CCIN pin is active low. The CCIN pin is mandatory for applications that allow the user to remove the SIM card during operation. The CCIN pin is solely intended for use with a SIM card. It must not be used for any other purposes. Failure to comply with this requirement may invalidate the type approval of MC75.

The total cable length between the board-to-board connector pins on MC75 and the pins of the external SIM card holder must not exceed 100mm in order to meet the specifications of 3GPP TS 51.010-1 and to satisfy the requirements of EMC compliance.

To avoid possible cross-talk from the CCCLK signal to the CCIO signal be careful that both lines are not placed closely next to each other. A useful approach is using the CCGND line to shield the CCIO line from the CCCLK line.

Note: No guarantee can be given, nor any liability accepted, if loss of data is encountered after removing the SIM card during operation.

Also, no guarantee can be given for properly initializing any SIM card that the user inserts after having removed a SIM card during operation. In this case, the application must restart MC75.

3.9 Serial Interface ASC0

MC75 offers an 8-wire unbalanced, asynchronous modem interface ASC0 conforming to ITU-T V.24 protocol DCE signalling. The electrical characteristics do not comply with ITU-T V.28. The significant levels are 0V (for low data bit or active state) and 2.9V (for high data bit or inactive state). For electrical characteristics please refer to Table 18.

MC75 is designed for use as a DCE. Based on the conventions for DCE-DTE connections it communicates with the customer application (DTE) using the following signals:

- Port TXD @ application sends data to the module's TXD0 signal line
- Port RXD @ application receives data from the module's RXD0 signal line

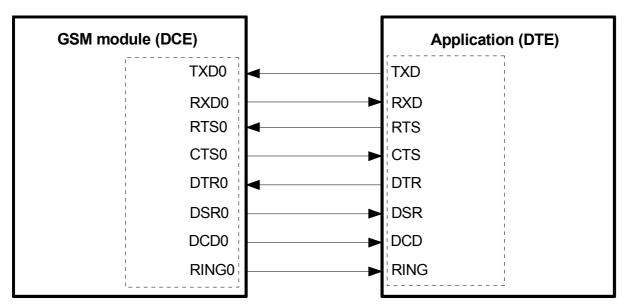


Figure 12: Serial interface ASC0

Features

- Includes the data lines TXD0 and RXD0, the status lines RTS0 and CTS0 and, in addition, the modem control lines DTR0, DSR0, DCD0 and RING0.
- ASC0 is primarily designed for controlling voice calls, transferring CSD, fax and GPRS data and for controlling the GSM engine with AT commands.
- Full Multiplex capability allows the interface to be partitioned into three virtual channels, yet with CSD and fax services only available on the first logical channel. Please note that when the ASC0 interface runs in Multiplex mode, ASC1 cannot be used. For more details on Multiplex mode see [5].
- The DTR0 signal will only be polled once per second from the internal firmware of MC75.
- The RING0 signal serves to indicate incoming calls and other types of URCs (Unsolicited Result Code). It can also be used to send pulses to the host application, for example to wake up the application from power saving state. See [1] for details on how to configure the RING0 line by AT^SCFG.
- By default, configured for 8 data bits, no parity and 1 stop bit. The setting can be changed using the AT command AT+ICF and, if required, AT^STPB. For details see [1].
- ASC0 can be operated at bit rates from 300bps to 460800bps.
- Autobauding supports the following bit rates: TBD.
- Autobauding is not compatible with multiplex mode.
- Supports RTS0/CTS0 hardware flow control and XON/XOFF software flow control.

Table 8: DCE-DTE wiring of ASC0

V.24	DCE		DTE	
circuit	Pin function	Signal direction	Pin function	Signal direction
103	TXD0	Input	TXD	Output
104	RXD0	Output	RXD	Input
105	RTS0	Input	RTS	Output
106	CTS0	Output	CTS	Input
108/2	DTR0	Input	DTR	Output
107	DSR0	Output	DSR	Input
109	DCD0	Output	DCD	Input
125	RING0	Output	/RING	Input

3.10 Serial Interface ASC1

MC75 offers a 4-wire unbalanced, asynchronous modem interface ASC1 conforming to ITU-T V.24 protocol DCE signalling. The electrical characteristics do not comply with ITU-T V.28. The significant levels are 0V (for low data bit or active state) and 2.9V (for high data bit or inactive state). For electrical characteristics please refer to Table 18.

MC75 is designed for use as a DCE. Based on the conventions for DCE-DTE connections it communicates with the customer application (DTE) using the following signals:

- Port TXD @ application sends data to module's TXD1 signal line
- Port RXD @ application receives data from the module's RXD1 signal line

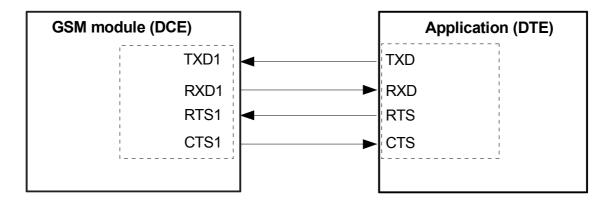


Figure 13: Serial interface ASC1

Features

- Includes only the data lines TXD1 and RXD1 plus RTS1 and CTS1 for hardware handshake.
- On ASC1 no RING line is available. The indication of URCs on the second interface depends on the settings made with the AT^SCFG command. For details refer to [1].
- Configured for 8 data bits, no parity and 1 or 2 stop bits.
- ASC1 can be operated at bit rates from 300bps to 460800bps.
- Autobauding TBD.
- Supports RTS1/CTS1 hardware flow control and XON/XOFF software flow control.

Table 9: DCE-DTE wiring of ASC1

V.24 circuit	DCE		DTE	
	Pin function	Signal direction	Pin function	Signal direction
103	TXD1	Input	TXD	Output
104	RXD1	Output	RXD	Input
105	RTS1	Input	RTS	Output
106	CTS1	Output	CTS	Input

3.11 USB Interface

MC75 supports a USB 2.0 Full Speed (12Mbit/s) device interface. It is primarily intended for use as command and data interface and for downloading firmware.

The USB I/O-pins are capable of driving the signal at min 3.0V. They are 5V I/O compliant.

To properly connect the module's USB interface to the host a USB 2.0 compatible connector is required. Furthermore, the USB modem driver delivered with MC75 must be installed as described below.

The USB host is responsible for supplying, across the VUSB_IN line, power to the module's USB interface, but not to other MC75 interfaces. This is because MC75 is designed as a self-powered device compliant with the "Universal Serial Bus Specification Revision 2.0".

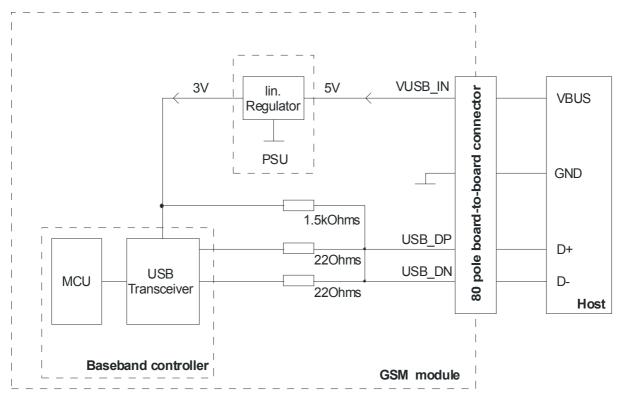


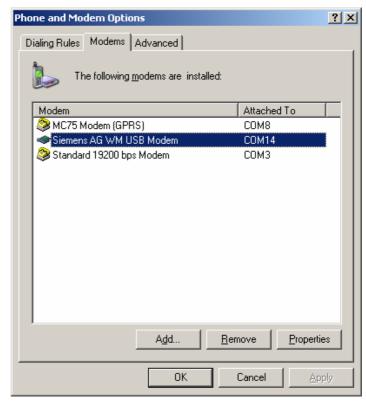
Figure 14: USB circuit

¹ The specification is ready for download on http://www.usb.org/developers/docs/

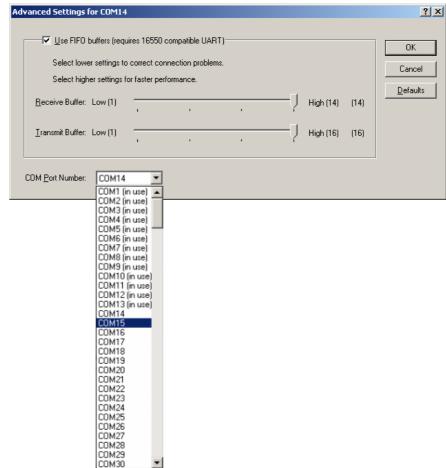
3.11.1 Installing the USB Modem Driver

This section assumes you are familiar with installing and configuring a modem under Windows 2000 and Windows XP. As both operating systems use multiple methods to access modem settings this section provides only a brief summary of the most important steps.

Take care that the "usbmodem.inf" file delivered with MC75 is at hand. Connect the USB cable to the MC75 host application (for example the evaluation board DSB75) and the PC. Windows detects MC75 as a new USB modem, opens the *Found New Hardware Wizard* and reports that it is searching for the "Siemens AG WM USB Modem" driver. Follow the instructions on the screen and specify the path where the "usbmodem.inf" file is located. Windows will copy the required software to your computer and configure the modem by assigning a free COM port. If you are already using more than one COM port then the next free one will be allocated. Click *Finish* to complete the installation.


Notes for Windows 2000 only:

- During the installation procedure you will be prompted for the "usbser.sys" driver. Make sure the file is present before you start installing the above inf file. The "usbser.sys" file is not delivered as a single file, but must be extracted from a Windows 2000 cabinet file. This is either the file "driver.cab" located in the "I386" folder of the original Windows 2000 CD or a later cabinet file inside the Service Pack. SP4 for example includes the "sp4.cab" file which can be found in its "I386" folder. The "usbser.sys" driver from the Service Pack has priority over one provided with the standard Windows 2000 install CD.
- It is necessary to restart Windows 2000 to make the changes take effect.


You can find the "Siemens AG WM USB Modem" listed under Control Panel | Phone and Modem Options | Modems.

Troubleshooting for installation problems

If Windows fails to assign the next free COM port to MC75 and, for example, allocates a COM port already used by another modem you can manually select a free port as follows:

Open the Windows Device Manager, select the installed "Siemens AG WM USB Modem", click Properties, select the Advanced tab and click Advanced Port settings. From the listbox COM Port Number choose a free port. To make the changes take effect disconnect and connect the USB cable. If not yet successful, also restart Windows.

3.12 I²C Interface

I²C is a serial, 8-bit oriented data transfer bus for bit rates up to 400kbps in Fast mode. It consists of two lines, the serial data line I2CDAT and the serial clock line I2CCLK.

The MC75 module acts as a single master device, e.g. the clock I2CCLK is driven by module. I2CDAT is a bi-directional line.

Each device connected to the bus is software addressable by a unique 7-bit address, and simple master/slave relationships exist at all times. The module operates as master-transmitter or as master-receiver. The customer application transmits or receives data only on request of the module. To configure and activate the I²C interface use the AT^SSPI command described in [1].

To configure and activate the I²C bus use the AT^SSPI command. Detailed information on the AT^SSPI command as well explanations on the protocol and syntax required for data transmission can be found in [1].

The I²C interface can be powered from an external supply or via the VEXT line of MC75. If connected to the VEXT line the I²C interface will be properly shut down when the module enters the Power-down mode. If you prefer to connect the I²C interface to an external power supply, take care that VCC of the application is in the range of V_{VEXT} and that the interface is shut down when the PWR_IND signal goes high. See figures below as well as Section 7 and Figure 41.

In the application I2CDAT and I2CCLK lines need to be connected to a positive supply voltage via a pull-up resistor.

For electrical characteristics please refer to Table 18.

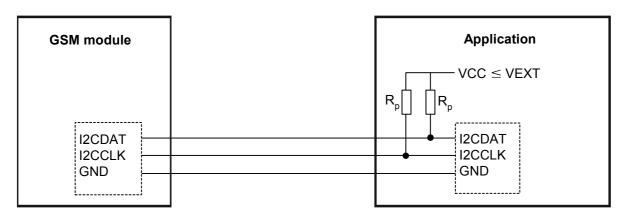


Figure 15: I²C interface connected to VCC of application

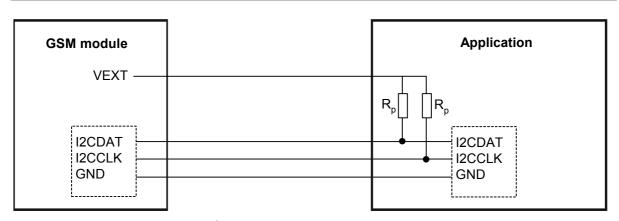


Figure 16: I²C interface connected to VEXT line of MC75

Note: Good care should be taken when creating the PCB layout of the host application: The traces of I2CCLK and I2CDAT should be equal in length and as short as possible.

3.13 SD Memory Card Interface

The SD card interface is compliant with the "SD Memory Card Specifications / Part 1 Physical Layer Specification, Version 1.01".

The interface supports the following features:

- Data rates up to 3250kByte/s.
- The read/write data rate depends on the clock rate.
- SD card insertion detection (at SD_D3-line) or via SD_DET line as option (CD switch in SD card holder required)
- Write protect detection via SD WP line is optional (WP switch in SD card holder required)
- Maximum capacity of SD cards compliant with the above SD Memory Card Specification is 4GByte.

The SD memory card interface can be powered from an external supply or via the VEXT line of MC75. If connected to the VEXT line the SD memory card interface will be properly shut down when the module enters the Power-down mode. If you prefer to connect the SD card interface to an external power supply, take care that the interface is shut down when the PWR_IND signal goes high. See also Section 7 and Figure 41.

Note: No guarantee can be given, nor any liability accepted, if loss of data is encountered after removing the SD memory card during operation.

Table 10: SD card interface

Signal	I/O	Description	Remark
SD_D0	I/O	4 bit data bus	
SD_D1	I/O		
SD_D2	I/O		
SD_D3	I/O		Card detect at power on: 0 or open = Card removed 1 or 50k pull-up = Card inserted Note: This is no removal detection during card operation!
SD_CMD	0	Command / Response	
SD_CLK	0	Clock	25.4kHz13MHz Clock rise and fall time: max. 10ns
SD_WP	1	Write protect detection	0= unlocked 1= locked (External pull-up resistor required)
SD_DET	I	Card detection (optional)	0= card inserted 1= card removed
Power supply from external source or from VEXT line		xternal source or from	Required power supply: min. 2.7V, max. 3.6V.

Note: Good care should be taken when creating the PCB layout of the host application: The traces of SD_CLK, SD_CMD, and SD_D(0..3) should be equal in length and as short as possible.

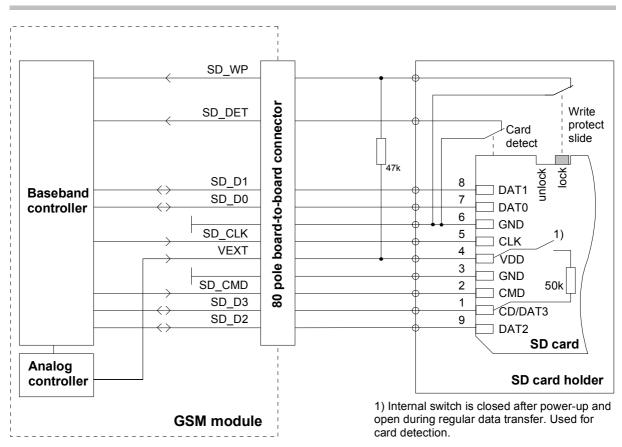


Figure 17: SD card interface (example with power supply from module's VEXT line)

3.14 Audio Interfaces

MC75 comprises three audio interfaces available on the board-to-board connector:

- Two analog audio interfaces, both with balanced or single-ended inputs/outputs.
- Serial digital audio interface (DAI) designed for PCM (Pulse Code Modulation).

This means you can connect up to three different audio devices, although only one interface can be operated at a time. Using the AT^SAIC command you can easily switch back and forth.

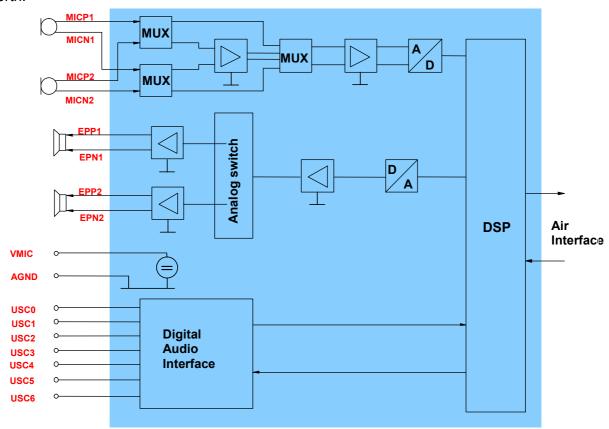


Figure 18: Audio block diagram

To suit different types of accessories the audio interfaces can be configured for different audio modes via the AT^SNFS command. The electrical characteristics of the voiceband part vary with the audio mode. For example, sending and receiving amplification, sidetone paths, noise suppression etc. depend on the selected mode and can be altered with AT commands (except for mode 1).

Both analog audio interfaces can be used to connect headsets with microphones or speakerphones. Headsets can be operated in audio mode 3, speakerphones in audio mode 2. Audio mode 5 can be used for a speech coder without signal pre or post processing.

When shipped from factory, all audio parameters of MC75 are set to interface 1 and audio mode 1. This is the default configuration optimized for the Votronic HH-SI-30.3/V1.1/0 handset and used for type approving the Siemens reference configuration. Audio mode 1 has fix parameters which cannot be modified. To adjust the settings of the Votronic handset simply change to another audio mode.

3.14.1 Speech Processing

The speech samples from the ADC or DAI are handled by the DSP of the baseband controller to calculate e.g. amplifications, sidetone, echo cancellation or noise suppression depending on the configuration of the active audio mode. These processed samples are passed to the speech encoder. Received samples from the speech decoder are passed to the DAC or DAI after post processing (frequency response correction, adding sidetone etc.).

Full rate, half rate, enhanced full rate, adaptive multi rate (AMR), speech and channel encoding including voice activity detection (VAD) and discontinuous transmission (DTX) and digital GMSK modulation are also performed on the GSM baseband processor.

3.14.2 Microphone Circuit

MC75 has two identical analog microphone inputs. There is no on-board microphone supply circuit, except for the internal voltage supply VMIC and the dedicated audio ground line AGND. Both lines are well suited to feed a balanced audio application or a single-ended audio application.

The AGND line on the MC75 board is especially provided to achieve best grounding conditions for your audio application. As there is less current flowing than through other GND lines of the module or the application, this solution will avoid hum and buzz problems.

3.14.2.1 Single-ended Microphone Input

Figure 19 as well as Figure 41 show an example of how to integrate a single-ended microphone input.

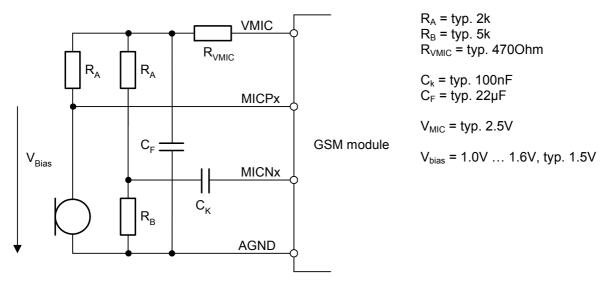


Figure 19: Single ended microphone input

R_A has to be chosen so that the DC voltage across the microphone falls into the bias voltage range of 1.0V to 1.6V and the microphone feeding current meets its specification.

The MICNx input is automatically self biased to the MICPx DC level. It is AC coupled via C_K to a resistive divider which is used to optimize supply noise cancellation by the differential microphone amplifier in the module.

The VMIC voltage should be filtered if gains larger than 20dB are used. The filter can be attached as a simple first order RC-network (R_{VMIC} and C_F).

This circuit is well suited if the distance between microphone and module is kept short. Due to good grounding the microphone can be easily ESD protected as its housing usually connects to the negative terminal.

3.14.2.2 Differential Microphone Input

Figure 20 shows a differential solution for connecting an electret microphone.

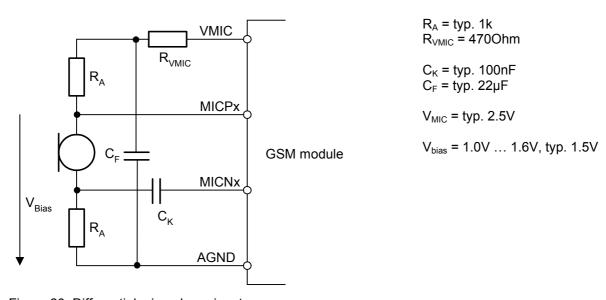
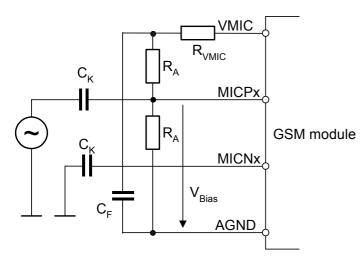


Figure 20: Differential microphone input

The resulting DC voltage between MICPx and AGND should be in the range of 1.0V to 1.6V to bias the input amplifier. MICNx is automatically self biased to the MICPx DC level. The resulting AC differential voltage is then amplified in the GSM module.


The VMIC voltage should be filtered if gains larger than 20dB are used. The filter can be attached as a simple first order RC-network (R_{VMIC} and C_F).

The advantage of this circuit is that it can be used if the application involves longer lines between microphone and module.

3.14.2.3 Line Input Configuration with OpAmp

Figure 21 shows an example of how to connect an opamp into the microphone circuit.

 R_A = typ. 47k R_{VMIC} = 4700hm

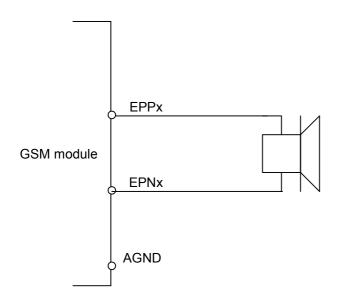
$$C_k$$
 = typ. 100nF
 C_F = typ. 22 μ F

$$V_{\rm MIC}$$
 = typ. 2.5V

$$V_{bias} = typ. \frac{1}{2} V_{MIC} = 1.25V$$

Figure 21: Line input configuration with OpAmp

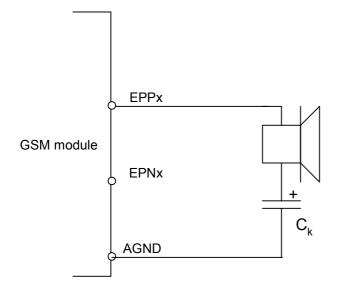
The AC source (e.g. an opamp) and its reference potential have to be AC coupled to the MICPx resp. MICNx input terminals. The voltage divider between VMIC and AGND is necessary to bias the input amplifier. MICNx is automatically self biased to the MICPx DC level.


The VMIC voltage should be filtered if gains larger than 20dB are used. The filter can be attached as a simple first order RC-network (R_{VMIC} and C_F). If a high input level and a lower gain are applied the filter is not necessary.

If desired, MICNx via C_K can also be connected to the inverse output of the AC source instead of connecting it to the reference potential for differential line input.

3.14.3 Loudspeaker Circuit

The GSM module comprises two analog speaker outputs: EP1 and EP2. Output EP1 is able to drive a load of 80hms while the output EP2 can drive a load of 320hms. Each interface can be connected in differential and in single ended configuration. See examples in Figure 22 and Figure 23.



Loudspeaker impedance

EPP1/EPN1 Z_L = typ. 80hm

EPP2/EPN2 Z_L = typ. 320hm

Figure 22: Differential loudspeaker configuration

Loudspeaker impedance

EPP1/EPN1 Z_L = typ. 80hm C_k = 220 μ F

EPP2/EPN2 Z_L = typ. 320hm C_k = 47 μ F

Figure 23: Single ended loudspeaker configuration

3.14.4 Digital Audio Interface DAI

The DAI can be used to connect audio devices capable of PCM (Pulse Code Modulation), for example a codec.

Table 11: Overview of DAI pin functions

Signal name on B2B connector	Function for PCM Interface	Input/Output
DAI0	TXDAI	0
DAI1	RXDAI	I
DAI2	FS (Frame sync)	0
DAI3	BITCLK	0
DAI4	nc	I
DAI5	nc	I
DAI6	nc	I

To clock input and output PCM samples the PCM interface delivers a bit clock (BITCLK) which is synchronous to the GSM system clock. The frequency of the bit clock is 128±1kHz. The frame sync signal (FS) has a frequency of 8kHz and is high for one BITCLK period. The PCM interface is master for the bit clock and the frame sync signals.

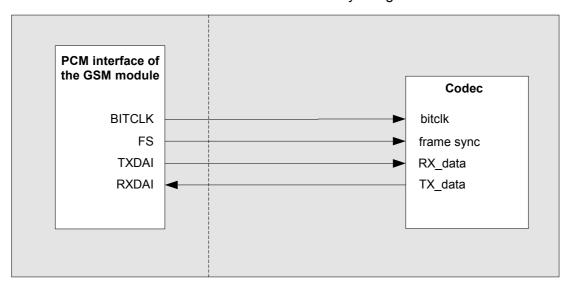


Figure 24: PCM interface application

The timing of a PCM short frame is shown in Figure 25. In PCM mode, 16-bit data are transferred in both directions at the same time. The duration of a frame sync pulse is one BITCLK period, starting at the rising edge of BITCLK. TXDAI data is shifted out at the next rising edge of BITCLK. The most significant bit is transferred first. Data transmitted from RXDAI of the internal application is sampled at the falling edge of BITCLK.

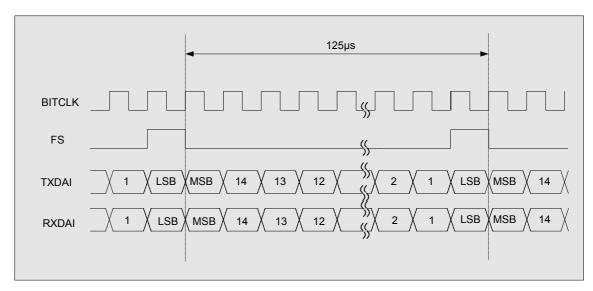


Figure 25: PCM timing

3.15 Control Signals

3.15.1 Synchronization Signal

The synchronization signal serves to indicate growing power consumption during the transmit burst. The signal is generated by the SYNC pin. Please note that this pin can adopt three different operating modes which you can select by using the AT^SSYNC command: the mode AT^SSYNC=0 described below, and the two LED modes AT^SSYNC=1 or AT^SSYNC=2 described in [1] and Section 3.15.2.

The first function (factory default AT^SSYNC=0) is recommended if you want your application to use the synchronization signal for better power supply control. Your platform design must be such that the incoming signal accommodates sufficient power supply to the MC75 module if required. This can be achieved by lowering the current drawn from other components installed in your application.

The timing of the synchronization signal is shown below. High level of the SYNC pin indicates increased power consumption during transmission.

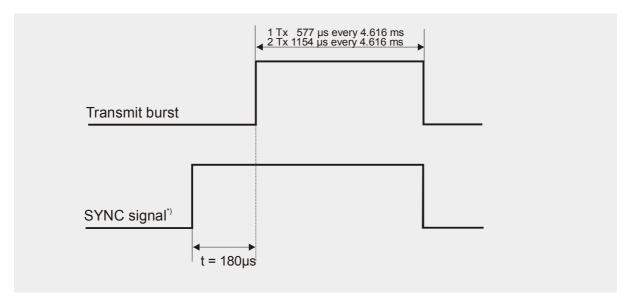


Figure 26: SYNC signal during transmit burst

*) The duration of the SYNC signal is always equal, no matter whether the traffic or the access burst are active.

3.15.2 Using the SYNC Pin to Control a Status LED

As an alternative to generating the synchronization signal, the SYNC pin can be configured to drive a status LED that indicates different operating modes of the MC75 module. To take advantage of this function the LED mode must be activated with the AT^SSYNC command and the LED must be connected to the host application. The connected LED can be operated in two different display modes (AT^SSYNC=1 or AT^SSYNC=2). For details please refer to [1].

Especially in the development and test phase of an application, system integrators are advised to use the LED mode of the SYNC pin in order to evaluate their product design and identify the source of errors.

To operate the LED a buffer, e.g. a transistor or gate, must be included in your application. A sample circuit is shown in Figure 27. Power consumption in the LED mode is the same as for the synchronization signal mode. For details see Table 18, SYNC pin.

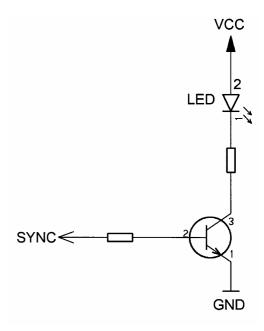


Figure 27: LED Circuit (Example)

3.15.3 Behavior of the /RING0 Line (ASC0 Interface only)

The /RING0 line is available on the first serial interface ASC0 (see also Chapter 3.9). The signal serves to indicate incoming calls and other types of URCs (Unsolicited Result Code).

Although not mandatory for use in a host application, it is strongly suggested that you connect the /RING0 line to an interrupt line of your application. In this case, the application can be designed to receive an interrupt when a falling edge on /RING0 occurs. This solution is most effective, particularly, for waking up an application from power saving. Note that if the /RING0 line is not wired, the application would be required to permanently poll the data and status lines of the serial interface at the expense of a higher current consumption. Therefore, utilizing the /RING0 line provides an option to significantly reduce the overall current consumption of your application.

The behavior of the /RING0 line varies with the type of event:

When a voice/fax/data call comes in the /RING0 line goes low for 1s and high for another
4s. Every 5 seconds the ring string is generated and sent over the /RXD0 line.
If there is a call in progress and call waiting is activated for a connected handset or
handsfree device, the /RING0 line switches to ground in order to generate acoustic
signals that indicate the waiting call.

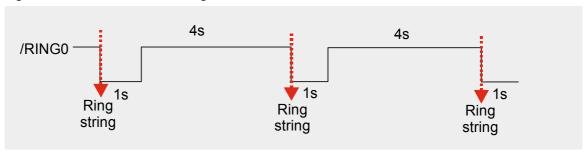


Figure 28: Incoming voice/fax/data call

 All other types of Unsolicited Result Codes (URCs) also cause the /RING0 line to go low, however for 1 second only.

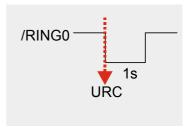


Figure 29: URC transmission

3.15.4 PWR_IND Signal

PWR_IND notifies the on/off state of the module. High state of PWR_IND indicates that the module is switched off. The state of PWR_IND immediately changes to low when IGT is pulled low. For state detection an external pull-up resistor is required.

4 Antenna Interface

The RF interface has an impedance of 50Ω . MC75 is capable of sustaining a total mismatch at the antenna connector or pad without any damage, even when transmitting at maximum RF power.

The external antenna must be matched properly to achieve best performance regarding radiated power, DC-power consumption, modulation accuracy and harmonic suppression. Antenna matching networks are not included on the MC75 PCB and should be placed in the host application.

Regarding the return loss MC75 provides the following values in the active band:

Table 12: Return loss in the active band

State of module	Return loss of module	Recommended return loss of application
Receive	≥ 8dB	≥ 12dB
Transmit	not applicable	≥ 12dB

The connection of the antenna or other equipment must be decoupled from DC voltage. This is necessary because the antenna connector is DC coupled to ground via an inductor for ESD protection.

4.1 Antenna Installation

To suit the physical design of individual applications MC75 offers two alternative approaches to connecting the antenna:

- Recommended approach: U.FL-R-SMT antenna connector from Hirose assembled on the component side of the PCB (top view on MC75). See Section 4.3 for details.
- Antenna pad and grounding plane placed on the bottom side. See Section 4.2.

The U.FL-R-SMT connector has been chosen as antenna reference point (ARP) for the Siemens reference equipment submitted to type approve MC75. All RF data specified throughout this manual are related to the ARP. For compliance with the test results of the Siemens type approval you are advised to give priority to the connector, rather than using the antenna pad.

IMPORTANT: Both solutions can only be applied alternatively. This means, whenever an antenna is plugged to the Hirose connector, the pad must not be used. Vice versa, if the antenna is connected to the pad, then the Hirose connector must be left empty.

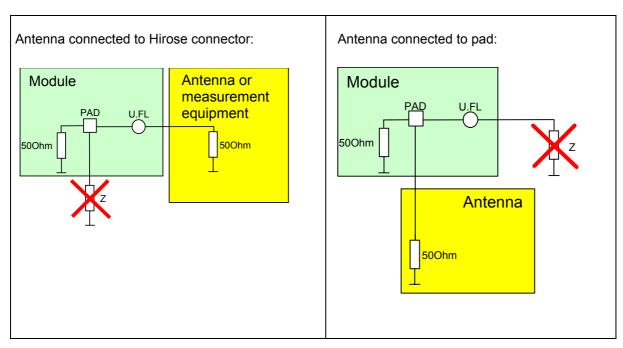


Figure 30: Never use antenna connector and antenna pad at the same time

No matter which option you choose, ensure that the antenna pad does not come into contact with the holding device or any other components of the host application. It needs to be surrounded by a restricted area filled with air, which must also be reserved 0.8mm in height.

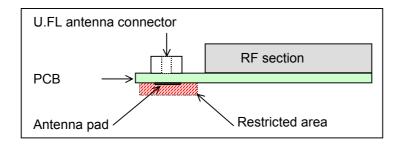


Figure 31: Restricted area around antenna pad

4.2 Antenna Pad

The antenna can be soldered to the pad, or attached via contact springs. For proper grounding connect the antenna to the ground plane on the bottom of MC75 which must be connected to the ground plane of the application.

When you decide to use the antenna pad take into account that the pad has not been intended as antenna reference point (ARP) for the Siemens MC75 type approval. The antenna pad is provided only as an alternative option which can be used, for example, if the recommended Hirose connection does not fit into your antenna design.

Also, consider that according to the GSM recommendations TS 45.005 and TS 51.010-01 a 50Ω connector is mandatory for type approval measurements. This requires GSM devices with an integral antenna to be temporarily equipped with a suitable connector or a low loss RF cable with adapter.

Notes on soldering:

- To prevent damage to the module and to obtain long-term solder joint properties you are advised to maintain the standards of good engineering practice for soldering.
- Be sure to solder the antenna core to the pad and the shielding of the coax cable to the ground plane of the module next to the antenna pad. The direction of the cable is not relevant from the electrical point of view.

MC75 material properties: MC75 PCB: FR4

Antenna pad: Gold plated pad

4.2.1 Suitable Cable Types

For direct solder attachment, we suggest to use the following cable types:

- RG316/U 50Ohm coaxial cable
- 1671A 50Ohm coaxial cable

Suitable cables are offered, for example, by IMS Connector Systems. For further details and other cable types please contact http://www.imscs.com.

4.3 Antenna Connector

MC75 uses an ultra-miniature SMT antenna connector supplied from Hirose Ltd. The product name is:

U.FL-R-SMT

The position of the antenna connector on the MC75 board can be seen in Figure 38.

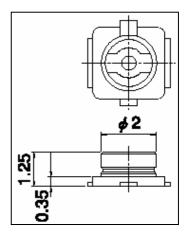


Figure 32: Mechanical dimensions of U.FL-R-SMT connector

Table 13: Product specifications of U.FL-R-SMT connector

Item	Specification	Conditions
Ratings		
Nominal impedance	50Ω	Operating temp:-40°C to + 90°C
Rated frequency	DC to 3GHz	Operating humidity: max. 90%
Mechanical characteristics		
Female contact holding force	0.15N min	Measured with a Ø 0.475 pin gauge
Repetitive operation	Contact resistance: Center $25m\Omega$ Outside $15m\Omega$	30 cycles of insertion and disengagement
Vibration	No momentary disconnections of 1µs; No damage, cracks and looseness of parts	Frequency of 10 to 100Hz, single amplitude of 1.5mm, acceleration of 59m/s², for 5 cycles in the direction of each of the 3 axes
Shock	No momentary disconnections of 1µs. No damage, cracks and looseness of parts.	Acceleration of 735m/s², 11ms duration for 6 cycles in the direction of each of the 3 axes
Environmental characteristics		
Humidity resistance	No damage, cracks and looseness of parts. Insulation resistance: $100 \text{M}\Omega \text{ min. at high humidity} \\ 500 \text{M}\Omega \text{ min. when dry}$	Exposure to 40°C, humidity of 95% for a total of 96 hours
Temperature cycle	No damage, cracks and looseness of parts. Contact resistance: Center $25m\Omega$ Outside $15m\Omega$	Temperature: $+40^{\circ}\text{C} \rightarrow 5 \text{ to } 35^{\circ}\text{C}$ $\rightarrow +90^{\circ}\text{C} \rightarrow 5 \text{ to } 35^{\circ}\text{C}$ Time: $30\text{min} \rightarrow \text{within } 5\text{min} \rightarrow$ 30min within 5min
Salt spray test	No excessive corrosion	48 hours continuous exposure to 5% salt water

Table 14: Material and finish of U.FL-R-SMT connector and recommended plugs

Part	Material		Finish
Shell	Phosphor bronze		Silver plating
Male center contact	Brass		Gold plating
Female center contact	Phosphor bronze		Gold plating
Insulator	Plug: Receptacle:	PBT LCP	Black Beige

Mating plugs and cables can be chosen from the Hirose U.FL Series. Examples are shown below and listed in Table 15. For latest product information please contact your Hirose dealer or visit the Hirose home page, for example http://www.hirose.com.

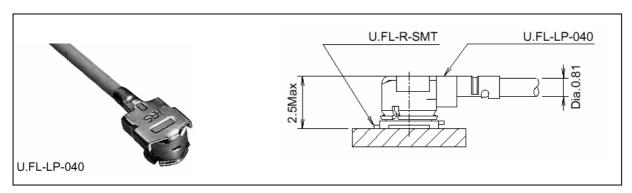


Figure 33: U.FL-R-SMT connector with U.FL-LP-040 plug

Figure 34: U.FL-R-SMT connector with U.FL-LP-066 plug

In addition to the connectors illustrated above, the U.FL-LP-(V)-040(01) version is offered as an extremely space saving solution. This plug is intended for use with extra fine cable (up to \emptyset 0.81mm) and minimizes the mating height to 2mm. See Figure 35 which shows the Hirose datasheet.

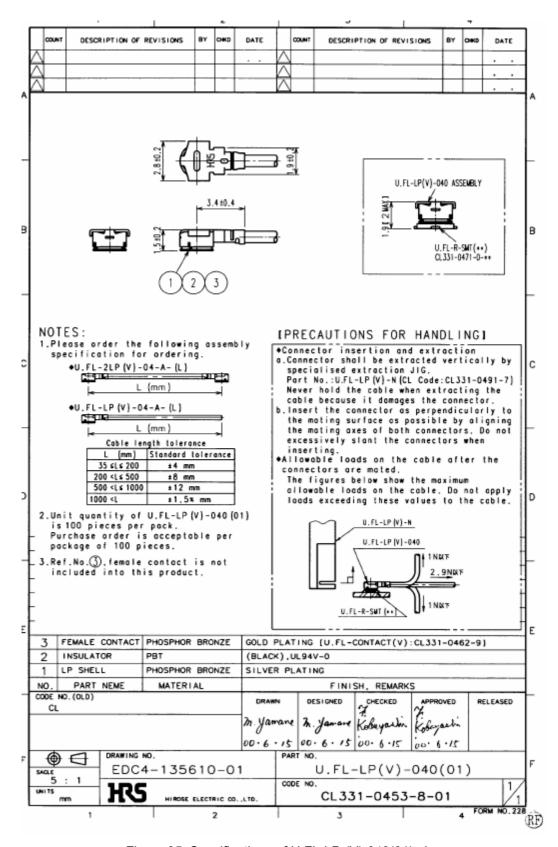


Figure 35: Specifications of U.FL-LP-(V)-040(01) plug

Table 15: Ordering information for Hirose U.FL Series

Item	Part number	HRS number
Connector on MC75	U.FL-R-SMT	CL331-0471-0-10
Right-angle plug shell for Ø 0.81mm cable	U.FL-LP-040	CL331-0451-2
Right-angle plug for Ø 0.81mm cable	U.FL-LP(V)-040 (01)	CL331-053-8-01
Right-angle plug for Ø 1.13mm cable	U.FL-LP-068	CL331-0452-5
Right-angle plug for Ø 1.32mm cable	U.FL-LP-066	CL331-0452-5
Extraction jig	E.FL-LP-N	CL331-04441-9

5 Electrical, Reliability and Radio Characteristics

5.1 Absolute Maximum Ratings

The absolute maximum ratings stated in Table 16 are stress ratings under non-operating conditions. Stresses beyond any of these limits will cause permanent damage to MC75.

Table 16: Absolute maximum ratings under non-operating conditions

Parameter	Min	Max	Unit
Supply voltage BATT+	-0.3	5.5	V
Voltage at digital pins	-0.3	3.05	V
Voltage at analog pins	-0.3	3.0	V
Voltage at VCHARGE pin	-0.3	5.5	V
Voltage at CHARGEGATE pin	-0.3	5.5	V
VUSB_IN	-0.3	5.5	V
VSENSE		5.5	V
ISENSE		5.5	V

5.2 Operating Temperatures

Test conditions were specified in accordance with IEC 60068-2 (still air). The values stated below are in compliance with GSM recommendation TS 51.010-01.

Table 17: Operating temperatures

Parameter	Min	Тур	Max	Unit
Ambient temperature (according to GSM 11.10)	-30	+25	+65 ^{*)}	°C
Automatic shutdown MC75 board temperature Battery temperature	-30 -20		+90 ^{*)} +60	°C
Ambient temperature for charging (software controlled fast charging)	0		+45	°C

Due to temperature measurement uncertainty, a tolerance on these switching off thresholds may occur. The possible deviation is in a range of:

- ± 3°C at the overtemperature limit
- ± 5°C at the undertemperature limit

^{*)} On MC75 the automatic overtemperature shutdown threshold is set to 90°C board temperature. This prevents permanent damage to components on the board. Consider the ratio of output power, supply voltage and operating temperature: to achieve $T_{amb\ max} = 65$ °C in GPRS Class 8 (GSM900/ GSM850) with 2W RF power the supply voltage must not be higher than 4.2V.

5.3 Pin Assignment and Signal Description

The Molex board-to-board connector on MC75 is an 80-pin double-row receptacle. The names and the positions of the pins can be seen from Figure 1 which shows the top view of MC75.

1	GND	GND	80
2	nc	Do not use	79
3	nc	PWR_IND	78
4	GND	Do not use	77
5	Do not use	Do not use	76
6	SD_WP	Do not use	75
7	Do not use	SD_D3	74
8	SD_DETECT	SD_D2	73
9	SD_CMD	SD_D1	72
10	SD_CLK	SD_D0	71
11	I2CCLK	I2CDAT	70
12	VUSB_IN	USB_DP	69
13	DAI5	USB_DN	68
14	ISENSE	VSENSE	67
15	DAI6	VMIC	66
16	CCCLK	EPN2	65
17	CCVCC	EPP2	64
18	CCIO	EPP1	63
19	CCRST	EPN1	62
20	CCIN	MICN2	61
21	CCGND	MICP2	60
22	DAI4	MICP1	59
23	DAI3	MICN1	58
24	DAI2	AGND	57
25	DAI1	IGT	56
26	DAI0	EMERG_RST	55
27	BATT_TEMP	DCD0	54
28	SYNC	CTS1	53
29	RXD1	CTS0	52
30	RXD0	RTS1	51
31	TXD1	DTR0	50
32	TXD0	RTS0	49
33	VDDLP	DSR0	48
34	VCHARGE	RING0	47
35	CHARGEGATE	VEXT	46
36	GND	BATT+	45
37	GND	BATT+	44
38	GND	BATT+	43
39	GND	BATT+	42
40	GND	BATT+	41

Figure 36: Pin assignment (component side of MC75)

Please note that the reference voltages listed in Table 18 are the values measured directly on the MC75 module. They do not apply to the accessories connected.

Table 18: Signal description

Function	Signal name	Ю	Signal form and level	Comment			
Power supply	BATT+	ı	V_l max = 4.3V V_l typ = 3.8V V_l min = 3.2V during Tx burst on board $I \approx 2A$, during Tx burst n = 1 Tx = $n = 1$ Tx = $n =$	Five pins of BATT+ and GND must be connected in parallel for supply purposes because higher peak currents may occur. Minimum voltage must not fall below 3.2V including drop, ripple, spikes.			
Power supply	GND		Ground	Application Ground			
Charge Interface	VCHARGE	I	V_{I} min = 1.015 * V_{BATT+} V_{I} max = 5.45 V	This line signalizes to the processor that the charger is connected. If unused keep pin open.			
	BATT_TEMP	I	Connect NTC with $R_{NTC} \approx 10 k\Omega$ @ 25°C to ground. See Section 3.5.3 for B value of NTC.	Battery temperature measurement via NTC resistance. NTC should be installed inside or near battery pack to enable proper charging and deliver temperature values. If unused keep pin open.			
	ISENSE	I	V_I max = 4.65V ΔV_I max to V_{BATT+} = +0.3V at normal condition	ISENSE is required for measuring the charge current. For this purpose, a shunt resistor for current measurement needs to be connected between ISENSE and VSENSE. If unused connect pin to VSENSE.			
	VSENSE	I	V _I max = 4.5V	VSENSE must be directly connected to BATT+ at battery connector or external power supply.			
	CHARGEGATE	0	V_{O} max = 5.5 V_{O} max = 1mA	Control line to the gate of charge FET If unused keep pin open.			
External supply voltage	VEXT	0	Normal mode: $V_{O}min = 2.75V$ $V_{O}typ = 2.93V$ $V_{O}max = 3.05V$ $I_{O}max = -50mA$	VEXT may be used for application circuits, for example to supply power for an SD card. If unused keep pin open. Not available in Power-down mode. The external digital logic must not cause any spikes or glitches on voltage VEXT.			

Function	Signal name	Ю	Signal form and level	Comment
Power indicator	PWR_IND	0	V _{IH} max = 10V V _{OL} max = 0.4V at Imax = 2mA	PWR_IND (Power Indicator) notifies the module's on/off state. PWR_IND is an open collector that needs to be connected to an external pullup resistor. Low state of the open collector indicates that the module is on. Vice versa, high level notifies the Powerdown mode. Therefore, the pin may be used to enable external voltage regulators which supply an external logic for communication with the module, e.g. level converters.
Ignition	IGT	I	$\begin{array}{l} R_{I} \approx 30 k \Omega, \ C_{I} \approx 10 n F \\ V_{IL} max = 0.8 V \ at \ Imax = -150 \mu A \\ V_{OH} max = 4.5 V \ (V_{BATT+}) \\ ON \qquad \qquad \\ \hline ON \qquad \qquad \\ \hline Active \ Low \geq 400 ms \\ \end{array}$	This signal switches the mobile on. This line must be driven low by an open drain or open collector driver.
Emergency reset	EMERG_RST	ı	$\begin{array}{l} R_{I}\approx 5k\Omega \\ V_{IL}max = 0.2V \text{ at Imax} = -0.5\text{mA} \\ V_{OH}min = 1.75V \\ V_{OH}max = 3.05V \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Reset or turn-off in case of emergency: Pull down and release EMERG_RST. Then, activating IGT for 400ms will reset MC75. If IGT is not activated for 400ms, MC75 switches off. Data stored in the volatile memory will be lost. For orderly software controlled reset rather use the AT+CFUN command (e.g. AT+CFUN=,1). This line must be driven by open drain or open collector. If unused keep pin open.
Synchroni- zation	SYNC	0	$V_{OL} max = 0.3V \text{ at I} = 0.1 mA$ $V_{OH} min = 2.3V \text{ at I} = -0.1 mA$ $V_{OH} max = 0.05V$	There are two alternative options for using the SYNC pin: a) Indicating increased current consumption during uplink transmission burst. Note that the timing of the signal is different during handover. b) Driving a status LED to indicate different operating modes of MC75. The LED must be installed in the host application. If unused keep pin open.
RTC backup	VDDLP	I/O	$R_{I} \approx 1 k\Omega$ $V_{O} max = 4.5 V$ $V_{BATT+} = 4.3 V$: $V_{O} = 3.2 V$ at $I_{O} = -500 \mu A$ $V_{BATT+} = 0 V$: $V_{I} = 2.7 V 4.5 V$ at $I_{max} = 15 \mu A$	If unused keep pin open.

Function	Signal name	Ю	Signal form and level	Comment
SIM interface specified for use with 3V SIM card	CCIN	I	$R_I \approx 100 k\Omega$ $V_{IL} max = 0.6 V at I = -25 μA$ $V_{IH} min = 2.1 V at I = -10 μA$ $V_O max = 3.05 V$	CCIN = Low, SIM card holder closed
	CCRST	0	$R_{O} \approx 47\Omega$ V_{OL} max = 0.25V at I = +1mA V_{OH} min = 2.5V at I = -0.5mA V_{OH} max = 2.95V	Maximum cable length or copper track 100mm to SIM card holder.
	CCIO	I/O	$R_{I} \approx 4.7 k\Omega$ $V_{IL} max = 0.75 V$ $V_{IL} min = -0.3 V$ $V_{IH} min = 2.1 V$ $V_{IH} max = CCVCCmin + 0.3 V = 3.05 V$ $R_{O} \approx 100 \Omega$ $V_{OL} max = 0.3 V \text{ at } I = +1 mA$ $V_{OH} min = 2.5 V \text{ at } I = -0.5 mA$	All signals of SIM interface are protected against ESD with a special diode array. Usage of CCGND is mandatory.
	CCCLK	0	V_{OH} max = 2.95V $R_O \approx 100\Omega$ V_{OL} max = 0.3V at I = +1mA V_{OH} min = 2.5V at I = -0.5mA V_{OH} max = 2.95V	
	ccvcc	0	V _o min = 2.75V V _o typ = 2.85V V _o max = 2.95V I _o max = -20mA	
	CCGND		Ground	
SIM interface specified for use with 1.8V SIM	CCIN	I	$R_{I} \approx 100 k\Omega$ $V_{IL} max = 0.6 V at I = -25 \mu A$ $V_{IH} min = 2.1 V at I = -10 \mu A$ $V_{O} max = 3.05 V$	CCIN = Low, SIM card holder closed
card	CCRST	0	$R_{O} \approx 47\Omega$ V_{OL} max = 0.25V at I = +1mA V_{OH} min = 1.45V at I = -0.5mA V_{OH} max = 1.90V	 Maximum cable length or copper track 100mm to SIM card holder.
	CCIO	I/O	$\begin{aligned} R_I &\approx 4.7 k\Omega \\ V_{IL} max &= 0.45 V \\ V_{IH} min &= 1.35 V \\ V_{IH} max &= CCVCCmin + 0.3 V = 2.00 V \\ R_O &\approx 100 \Omega \\ V_{OL} max &= 0.3 V \ at \ I = +1 mA \\ V_{OH} min &= 1.45 V \ at \ I = -0.5 mA \end{aligned}$	All signals of SIM interface are protected against ESD with a special diode array. Usage of CCGND is mandatory.
	CCCLK	0	V_{OH} max = 1.90V $R_{O} \approx 100\Omega$ V_{OL} max = 0.3V at I = +1mA V_{OH} min = 1.45V at I = -0.5mA V_{OH} max = 1.90V	
	CCVCC	0	V_{O} min = 1.70V, V_{O} typ = 1.80V V_{O} max = 1.90V I_{O} max = -20mA	
	CCGND		Ground	
ASC0 Serial interface	RXD0 TXD0 CTS0	0 	V _{OL} max = 0.2V at I = 2mA V _{OH} min = 2.55V at I = -0.5mA V _{OH} max = 3.05V	Serial interface for AT commands or data stream.
	RTS0 DTR0 DCD0 DSR0 RING0		V_{IL} max = 0.8V V_{IH} min = 2.0V V_{IH} max = VEXTmin + 0.3V = 3.05V	If lines are unused keep pins open.

Function	Signal name	10	Signal form and level	Comment
ASC1	RXD1	0	V_{OI} max = 0.2V at I = 2mA	Serial interface for AT
Serial	TXD1	ı	V _{OH} min = 2.55V at I = -0.5mA	commands or data stream.
interface	CTS1	0	V_{OH} max = 3.05 V	
	RTS1	ı	\/ may = 0.0\/	If lines are unused keep pins
			V_{IL} max = 0.8V V_{IH} min = 2.0V	open.
			V_{IH} max = VEXTmin + 0.3V = 3.05V	
I ² C interface	I2CCLK	0	V _{OL} max = 0.2V at I = 2mA	I2CDAT is configured as
			V_{OH} min = 2.55V at I = -0.5mA	Open Drain and needs a pull-
	IOCDAT	1/0	V _{OH} max = 3.05V	up resistor in the host application.
	I2CDAT	I/O	V_{OL} max = 0.2V at I = 2mA V_{IL} max = 0.8V	According to the I2C Bus
			V_{IH} min = 2.0V	Specification Version 2.1 for
			V_{IH} max = VEXTmin + 0.3V = 3.05V	the fast mode a rise time of max. 300ns is permitted.
				There is also a maximum
				V _{OL} =0.4V at 3mA specified.
				The value of the pull-up
				depends on the capacitive load of the whole system (I2C
				Slave + lines). The maximum
				sink current of I2CDAT and
				I2CCLK is 4mA.
				If lines are unused keep pins open.
USB	VUSB_IN	I	V_{IN} min = 4.0V	If lines are unused keep pins
	USB DN	I/O	V _{IN} max = 5.25V Differential Output Crossover voltage	open.
	USB DP	1/0	Range	
	03B_DF	1/0	V_{CRS} min = 1.5V, V_{CRS} max = 2.0V	
			Driver Output Resistance Z _{DRV} typ = 320hm	
			ZDRVIJP – 32011111	
SD card	SD_D0	I/O	V _{OL} max = 0.2V at I = 2mA	SD card interface can be
interface	SD_D1		V_{OH} min = 2.55V at I = -0.5mA	connected to VEXT of MC75
	SD_D2		V_{OH} max = 3.05 V	or to external power supply.
	SD_D3		V _{II} max = 0.8V	Rise and fall time of SD_CLK signal: max. 10ns.
	SD_CLK	0	V _{IH} min = 2.0V	If lines are unused keep pins
	SD_WP	I	V_{IH} max = VEXTmin + 0.3V = 3.05V	open.
	SD_CMD	0		
	SD_DETECT	I		
Digital Audio	DAI0	0	V_{OL} max = 0.2V at I = 2mA	See Table 11 for details.
interface	DAI1	I	V _{OH} min = 2.55V at I = -0.5mA V _{OH} max = 3.05V	If unused keep pins open.
	DAI2	0	-	
	DAI3	0	V _{IL} max = 0.8V	
	DAI4	I	V _{IH} min = 2.0V	
	DAI5	I	V_{IH} max = VEXTmin + 0.3V = 3.05V	
	DAI6	I		

Function	Signal name	Ю	Signal form and level	Comment	
Analog	VMIC	0	V _O min = 2.4V	Microphone supply for	
Audio			$V_O typ = 2.5V$	customer feeding circuits	
interface			V_{O} max = 2.6 V		
			I _{max} = 2mA		
	EPP2	0	1.0954Vpp (differential) typical	The audio output can directly	
	EPN2	0	3.4Vpp differential maximal	operate a 32-Ohm-	
			Audio mode TBD	loudspeaker.	
			Measurement conditions TBD	If unused keep pins open.	
			Minimum differential resp. single ended		
			load 27Ohms		
	EPP1	0	1.0954Vpp (differential) typical	The audio output can directly	
	EPN1	0	6.0Vp-p differential maximal	operate an 8-Ohm- loudspeaker.	
			Audio mode TBD	If unused keep pins open.	
			Measurement conditions TBD	ii unuseu keep pins open.	
			Minimum differential resp. single ended		
			load 7.50hms		
	MICP1	l	Full Scale Input Voltage 1.578Vpp	Balanced or single ended	
	MICN1	ı	0dBm0 Input Voltage 1.0954Vpp	microphone or line inputs with external feeding circuit (using	
	MICP2	I	At MICNx, apply external bias from 1.0V to	VMIC and AGND).	
	MICN2	- 1	1.6V.	If unused keep pins open.	
			Audio mode TBD		
			Measurement conditions TBD		
	AGND		Analog Ground	GND level for external audio circuits	

5.4 Power Supply Ratings

Table 19: Power supply ratings

Parameter	Description	Conditions	Min	Тур	Max	Unit
BATT+	Supply voltage	Directly measured at reference points BATT+ and GND, see chapter 3.2.2	3.2	3.8	4.3	٧
		Voltage must stay within the min/max values, including voltage drop, ripple, spikes.				
	Voltage drop during transmit burst	Normal condition, power control level for P _{out max}			400	mV
	Voltage ripple	Normal condition, power control level for P _{out max}				
		@ f<200kHz			50	mV
		@ f>200kHz			2	mV
I _{VDDLP}	OFF State	RTC Backup @ BATT+ = 0V		25		μΑ
I _{BATT+}	supply current	POWER DOWN mode 1)		50	100	μΑ
	Average standby	SLEEP mode @ DRX = 9		3.7		mA
	supply current ²⁾	SLEEP mode @ DRX = 5		4.6		mA
		SLEEP mode @ DRX = 2		7.0		mA
		IDLE mode @ DRX = 2		28		mA

Measured after module INIT (switch ON the module and following switch OFF); applied voltage on BATT+ (w/o INIT) show increased POWER DOWN supply current.

SLEEP mode measurements started 3 minutes after switch ON the module Averaging times: SLEEP mode - 3 minutes; IDLE mode - 1.5 minutes Communication tester settings: no neighbor cells, no cell reselection etc. USB interface disabled

²⁾ Additional conditions:

Table 20: Current consumption during Tx burst for GSM 850MHz and GSM 900MHz

Mode	GSM call	GSM call GPRS Class 10 GPRS Class 12 Class 8			EGPRS Class 8	EGPRS Class 1	0		
Timeslot configuration	1Tx / 1Rx	1Tx / 4Rx	2Tx / 3Rx		4Tx / 1Rx		1Tx / 4Rx	2Tx / 3Rx	
Maximum possible power (RF power nominal)	2W (33dBm)	2W (33dBm)	2W (33dBm)	1W (30dBm)	1W (30dBm)	0.5W (27dBm)	0.5W (27dBm)	0.5W (27dBm)	0.25W (24dBm)
Radio output power reduction with AT^SCFG, parameter < <i>ropr</i> >	<ropr> = 1 3</ropr>	<ropr> = 1 3</ropr>	<ropr> = 1</ropr>	<ropr> = 2 or 3</ropr>	<ropr> = 1</ropr>	<ropr> = 2 or 3</ropr>	<ropr> = 1 3</ropr>	<ropr> = 1</ropr>	<ropr> = 2 or 3</ropr>
Current characteristics									
Burst current @ 50Ω antenna (typ.)	2.0A	2.0A	2.0A	1.5A	1.5A	1.3A	1.6A peak 1.4A plateau	1.6A peak 1.4A plateau	1.3A peak 1.1A plateau
Burst current @ total mismatch	3.2A	3.2A	3.2A	2.3A	2.3A	1.9A	2.0A peak 1.6A plateau	2.0A peak 1.6A plateau	1.5A peak 1.3A plateau
Average current @ 50Ω antenna (typ.)	335mA	385mA	610mA	485mA	810mA	710mA	405mA	525mA	450mA
Average current @ total mismatch	485mA	535mA	910mA	685mA	1210mA	1010mA	430mA	575mA	500mA

AT parameters are given in brackets <...> and marked italic.

Table 21: Current consumption during Tx burst for GSM 1800MHz and GSM 1900MHz

Mode	GSM call GPRS GPRS Class10 GPRS Class 12			EGPRS Class 8	EGPRS Class 1	0			
Timeslot configuration	1Tx / 1Rx	1Tx / 4Rx	2Tx / 3Rx		4Tx / 1Rx		1Tx / 4Rx	2Tx / 3Rx	
Maximum possible power (RF power nominal)	1W (30dBm)	1W (30dBm)	1W (30dBm)	0.5W (27dBm)	0.5W (27dBm)	0.25W (24dBm)	0.25W (24dBm)	0.25W (24dBm)	0.125W (21dBm)
Radio output power reduction with AT^SCFG, parameter < <i>ropr></i>	<ropr> = 1 3</ropr>	<ropr> = 1 3</ropr>	<ropr> = 1</ropr>	<ropr> = 2 or 3</ropr>	<ropr> = 1</ropr>	<ropr> = 2 or 3</ropr>	<ropr> = 1 3</ropr>	<ropr> = 1</ropr>	<ropr> = 2 or 3</ropr>
Current characteristics		Av							
Burst current @ 50Ω antenna (typ.)	1.6A	1.6A	1.6A	1.4A	1.4A	1.2A	1.4A peak 1.2A plateau	1.4A peak 1.2A plateau	1.25A peak 1.1A plateau
Burst current @ total mismatch	2.1A	2.1A	2.1A	1.75A	1.75A	1.5A	1.9A peak 1.6A plateau	1.9A peak 1.6A plateau	1.6A peak 1.3A plateau
Average current @ 50Ω antenna (typ.)	285mA	335mA	510mA	460mA	760mA	660mA	380mA	475mA	450mA
Average current @ total mismatch	350mA	400mA	635mA	550mA	940mA	810mA	430mA	575mA	500mA

AT parameters are given in brackets <...> and marked italic.

5.5 Electrostatic Discharge

The GSM engine is not protected against Electrostatic Discharge (ESD) in general. Consequently, it is subject to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates a MC75 module.

Special ESD protection provided on MC75:

Antenna interface: one spark discharge line (spark gap)

SIM interface: clamp diodes for protection against overvoltage.

The remaining ports of MC75 are not accessible to the user of the final product (since they are installed within the device) and therefore, are only protected according to the "Human Body Model" requirements.

MC75 has been tested according to the EN 61000-4-2 standard. The measured values can be gathered from the following table.

Table 22: Measured electrostatic values

Specification / Requirements	Contact discharge	Air discharge	
ETSI EN 301 489-7			
ESD at SIM port	± 4kV	± 8kV	
ESD at antenna port	± 4kV	± 8kV	
Human Body Model (Test conditions: 1.5k Ω , 100pF)			
ESD at USB interface	± 1kV	± 1kV	
ESD at SD card interface	± 1kV	± 1kV	
ESD at all other interfaces	± 1kV	± 1kV	

Note: Please note that the values may vary with the individual application design. For example, it matters whether or not the application platform is grounded over external devices like a computer or other equipment, such as the Siemens reference application described in Chapter 8.

5.6 Reliability Characteristics

The test conditions stated below are an extract of the complete test specifications.

Table 23: Summary of reliability test conditions

Type of test	Conditions	Standard
Vibration	Frequency range: 10-20Hz; acceleration: 3.1mm amplitude Frequency range: 20-500Hz; acceleration: 5g Duration: 2h per axis = 10 cycles; 3 axes	DIN IEC 68-2-6
Shock half-sinus	Acceleration: 500g Shock duration: 1msec 1 shock per axis 6 positions (± x, y and z)	DIN IEC 68-2-27
Dry heat	Temperature: +70 ±2°C Test duration: 16h Humidity in the test chamber: < 50%	EN 60068-2-2 Bb ETS 300019-2-7
Temperature change (shock)	Low temperature: -40°C ±2°C High temperature: +85°C ±2°C Changeover time: < 30s (dual chamber system) Test duration: 1h Number of repetitions: 100	DIN IEC 68-2-14 Na ETS 300019-2-7
Damp heat cyclic	High temperature: +55°C ±2°C Low temperature: +25°C ±2°C Humidity: 93% ±3% Number of repetitions: 6 Test duration: 12h + 12h	DIN IEC 68-2-30 Db ETS 300019-2-5
Cold (constant exposure)	Temperature: -40 ±2°C Test duration: 16h	DIN IEC 68-2-1

6 Mechanics

6.1 Mechanical Dimensions of MC75

Figure 37 shows the top view of MC75 and provides an overview of the board's mechanical dimensions. For further details see Figure 38.

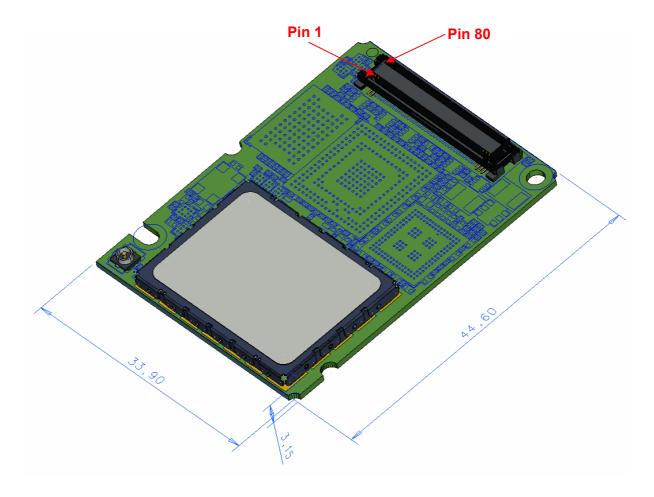
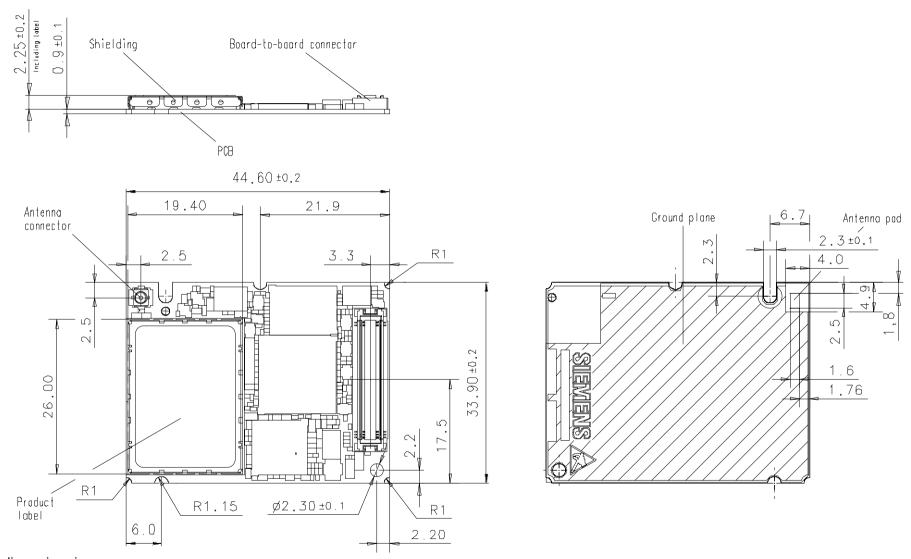



Figure 37: MC75 - top view

All dimensions in mm

Figure 38: Dimensions of MC75

6.2 Mounting MC75 to the Application Platform

There are many ways to properly install MC75 in the host device. An efficient approach is to mount the MC75 PCB to a frame, plate, rack or chassis.

Fasteners can be M2 screws plus suitable washers, circuit board spacers, or customized screws, clamps, or brackets. In addition, the board-to-board connection can also be utilized to achieve better support. To help you find appropriate spacers a list of selected screws and distance sleeves for 3mm stacking height can be found in Section 9.2.

When using the two small holes take care that the screws are inserted with the screw head on the bottom of the MC75 PCB. Screws for the large holes can be inserted from top or bottom.

For proper grounding it is strongly recommended to use large ground plane on the bottom of board in addition to the five GND pins of the board-to-board connector. The ground plane may also be used to attach cooling elements, e.g. a heat sink or thermally conductive tape.

To prevent mechanical damage, be careful not to force, bend or twist the module. Be sure it is positioned flat against the host device.

All the information you need to install an antenna is summarized in Chapter 4. Note that the antenna pad on the bottom of the MC75 PCB must not be influenced by any other PCBs, components or by the housing of the host device. It needs to be surrounded by a restricted space as described in Section 4.1.

6.3 Board-to-Board Application Connector

This section provides the specifications of the 80-pin board-to-board connector used to connect MC75 to the external application.

Connector mounted on the MC75 module:

Type: 52991-0808 SlimStack Receptacle

80 pins, 0.50mm pitch,

for stacking heights from 3.0 to 4.0mm,

see Figure 39 for details.

Supplier: Molex

www.molex.com

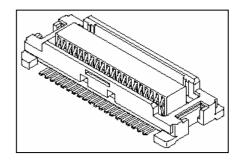



Table 24: Technical specifications of Molex board-to-board connector

Parameter	Specification (80-pin B2B connector)
Electrical	
Number of Contacts	80
Contact spacing	0.5mm (.020")
Voltage	50V
Rated current	0.5A max per contact
Contact resistance	50mΩ max per contact
Insulation resistance	> 100MΩ
Dielectric Withstanding Voltage	500V AC (for 1 minute)
Physical	
Insulator material (housing)	White glass-filled LCP plastic, flammability UL 94V 0
Contact material	Plating: Gold over nickel
Insertion force 1 st	< 74.4N
Insertion force 30 th	< 65.6N
Withdrawal force 1 st	> 10.8N
Maximum connection cycles	30 (@ 70mΩ max per contact)

Mating connector types for the customer's application offered by Molex:

- 53748-0808 SlimStack Plug, 3mm stacking height, see Figure 40 for details.
- 53916-0808 SlimStack Plug, 4mm stacking height

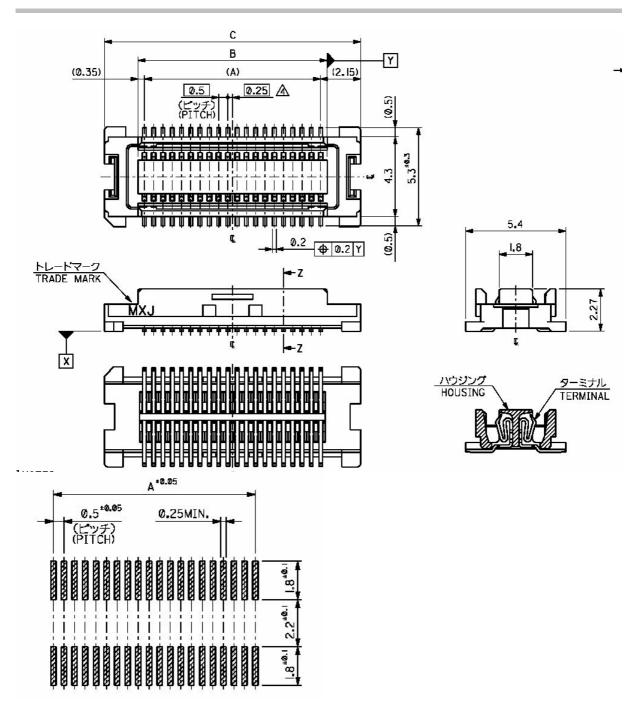


Figure 39: Molex board-to-board connector 52991-0808 on MC75

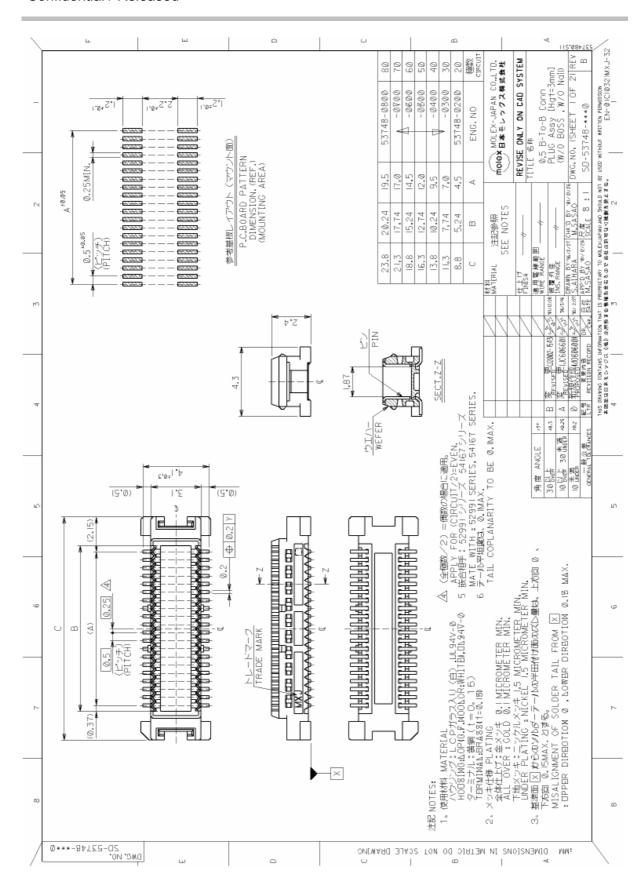


Figure 40: Mating board-to-board connector 53748-0808 on application

7 Sample Application

Figure 41 shows a typical example of how to integrate a MC75 module into the GSM part of a mobile application. Usage of the various host interfaces depends on the desired features of the application.

Audio interface 1 demonstrates the balanced connection of microphone and earpiece. This solution is particularly well suited for internal transducers. Audio interface 2 uses an unbalanced microphone and earpiece connection typically found in headset applications.

The charging circuit is optimized for the charging stages (trickle charging and software controlled charging) as well as the battery and charger specifications described in Section 3.5.

The PWR_IND line is an open collector that needs an external pull-up resistor which connects to the voltage supply VCC μ C of the microcontroller. Low state of the open collector pulls the PWR_IND signal low and indicates that the MC75 module is active, high level notifies the Power-down mode.

If the module is in Power-down mode avoid current flowing from any other source into the module circuit, for example reverse current from high state external control lines. Therefore, the controlling application must be designed to prevent reverse flow. This is not necessary for the USB interface.

The SD memory card interface can be powered from an external supply or via the VEXT line of MC75. Figure 41 uses the VEXT line. The advantage of this solution is that when the module enters the Power-down mode, the SD memory card interface is shut down as well. If you prefer to connect an SD card to an external power supply, take care that the interface is shut down when the PWR_IND signal goes high in Power-down mode. The same applies to the I²C interface – in this case it is recommended to connect its external pull-up resistors (Rp) from VEXT.

The EMC measures are best practice recommendations. In fact, an adequate EMC strategy for an individual application is very much determined by the overall layout and, especially, the position of components. For example, mounting the internal acoustic transducers directly on the PCB eliminates the need to use the ferrite beads shown in the sample schematic. However, when connecting cables to the module's interfaces it is strongly recommended to add appropriate ferrite beads for reducing RF radiation.

<u>Disclaimer</u>

No warranty, either stated or implied, is provided on the sample schematic diagram shown in Figure 41 and the information detailed in this section. As functionality and compliance with national regulations depend to a great amount on the used electronic components and the individual application layout manufacturers are required to ensure adequate design and operating safeguards for their products using MC75 modules.

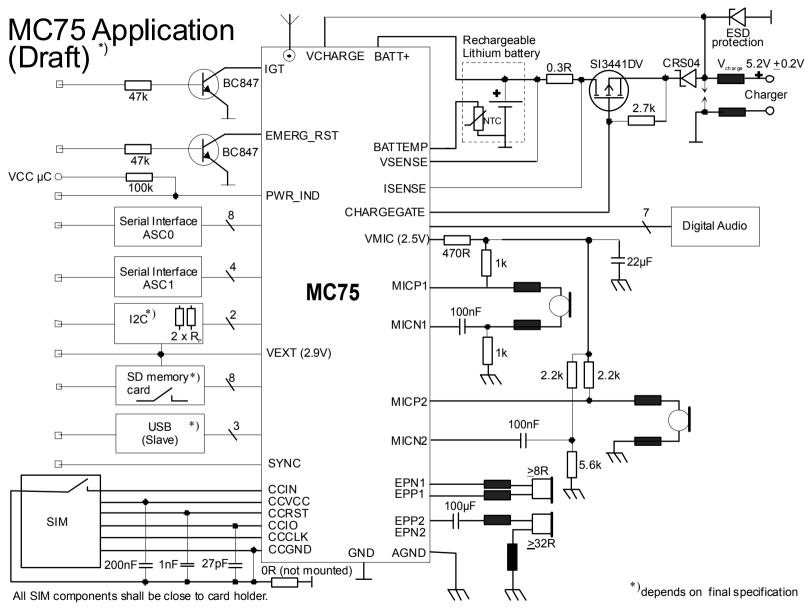


Figure 41: MC75 sample application (draft)

8 Reference Approval

8.1 Reference Equipment for Type Approval

The Siemens reference setup submitted to type approve MC75 consists of the following components:

- Siemens MC75 cellular engine
- Development Support Box DSB75
- SIM card reader integrated on DSB75
- U.FL-R-SMT antenna connector and U.FL-LP antenna cable
- Handset type Votronic HH-SI-30.3/V1.1/0
- Li-lon battery
- PC as MMI

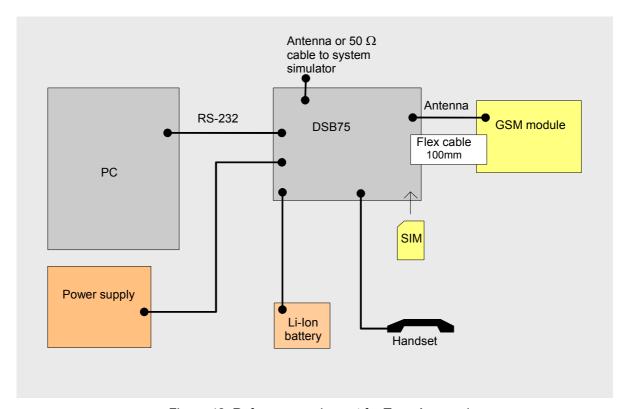


Figure 42: Reference equipment for Type Approval

8.2 Compliance with FCC Rules and Regulations

The FCC Equipment Authorization Certification for the MC75 reference application described in Section 8.1 is listed under the

FCC identifier QIPMC75 IC: 267W-MC75 granted to Siemens AG.

The MC75 reference application registered under the above identifier is certified to be in accordance with the following Rules and Regulations of the Federal Communications Commission (FCC).

Power listed is ERP for Part 22 and EIRP for Part 24

"This device contains GSM, GPRS Class12 and EGPRS Class 10 functions in the 900 and 1800MHz Band which are not operational in U.S. Territories.

This device is to be used only for mobile and fixed applications. The antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter. Users and installers must be provided with antenna installation instructions and transmitter operating conditions for satisfying RF exposure compliance. Antennas used for this OEM module must not exceed 8.4dBi gain (GSM 1900) and 2.9dBi (GSM 850) for mobile and fixed operating configurations. This device is approved as a module to be installed in other devices."

The FCC label of the module must be visible from the outside. If not, the host device is required to bear a second label stating, "Contains FCC ID QIPMC75".

IMPORTANT: Manufacturers of mobile or fixed devices incorporating MC75 modules are advised to

- clarify any regulatory questions,
- have their completed product tested,
- have product approved for FCC compliance, and
- include instructions according to above mentioned RF exposure statements in end product user manual.

Please note that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

9 Appendix

9.1 List of Parts and Accessories

Table 25: List of parts and accessories

Description	Supplier	Ordering information
MC75	Siemens	Siemens ordering number: L36880-N8810-A100
Siemens Car Kit Portable	Siemens	Siemens ordering number: L36880-N3015-A117
DSB75 Support Box	Siemens	Siemens ordering number: L36880-N8811-A100
Votronic Handset	VOTRONIC	Votronic HH-SI-30.3/V1.1/0 VOTRONIC Entwicklungs- und Produktionsgesellschaft für elektronische Geräte mbH Saarbrücker Str. 8 66386 St. Ingbert Germany Phone: +49-(0)6 89 4 / 92 55-0 Fax: +49-(0)6 89 4 / 92 55-88 e-mail: contact@votronic.com
SIM card holder incl. push button ejector and slide-in tray	Molex	Ordering numbers: 91228 91236 Sales contacts are listed in Table 26.
Board-to-board connector	Molex	Sales contacts are listed in Table 26.
U.FL-R-SMT antenna connector	Hirose	See Section 4.3 for details on U.FL-R-SMT connector, mating plugs and cables. Sales contacts are listed in Table 27.

Table 26: Molex sales contacts (subject to change)

Molex	Molex Deutschland GmbH	American Headquarters
For further information please click:	Felix-Wankel-Str. 11 4078 Heilbronn-Biberach	Lisle, Illinois 60532 U.S.A.
http://www.molex.com/	Germany	Phone: +1-800-78MOLEX
TREP. IT WWW. THOTEX. GOTTIF	Phone: +49-7066-9555 0	Fax: +1-630-969-1352
	Fax: +49-7066-9555 29	
	Email: mxgermany@molex.com	
Molex China Distributors	Molex Singapore Pte. Ltd.	Molex Japan Co. Ltd.
Beijing,		
, , , , , , , , , , , , , , , , , , , ,		
	Fax: +65-265-6044	Fax: +81-462-65-2366
· ·		
, ,		
1 dx. 100-10-0320-9730		
	Jurong, Singapore Phone: +65-268-6868 Fax: +65-265-6044	Yamato, Kanagawa, Japan Phone: +81-462-65-2324 Fax: +81-462-65-2366

Table 27: Hirose sales contacts (subject to change)

Hirose Ltd. For further information please click: http://www.hirose.com	Hirose Electric (U.S.A.) Inc 2688 Westhills Court Simi Valley, CA 93065 U.S.A. Phone: +1-805-522-7958 Fax: +1-805-522-3217	Hirose Electric GmbH Zeppelinstrasse 42 73760 Ostfildern Kemnat 4 Germany Phone: +49-711-4560-021 Fax +49-711-4560-729 E-mail info@hirose.de
Hirose Electric UK, Ltd Crownhill Business Centre 22 Vincent Avenue, Crownhill Milton Keynes, MK8 OAB Great Britain Phone:+44-1908-305400 Fax: +44-1908-305401	Hirose Electric Co., Ltd. 5-23, Osaki 5 Chome, Shinagawa-Ku Tokyo 141 Japan Phone: +81-03-3491-9741 Fax: +81-03-3493-2933	Hirose Electric Co., Ltd. European Branche First class Building 4F Beechavenue 46 1119PV Schiphol-Rijk Netherlands Phone: +31-20-6557-460 Fax: +31-20-6557-469

9.2 Fasteners and Fixings for Electronic Equipment

This section provides a list of suppliers and manufacturers offering fasteners and fixings for electronic equipment and PCB mounting. The content of this section is designed to offer basic guidance to various mounting solutions with no warranty on the accuracy and sufficiency of the information supplied. Please note that the list remains preliminary although it is going to be updated in later versions of this document.

9.2.1 Fasteners from German Supplier ETTINGER GmbH

Sales contact: ETTINGER GmbH

http://www.ettinger.de/main.cfm
Phone: +4981 04 66 23 - 0
Fax: +4981 04 66 23 - 0

The following tables contain only article numbers and basic parameters of the listed components. For further detail and ordering information please contact Ettinger GmbH.

Please note that some of the listed screws, spacers and nuts are delivered with the DSB75 Support Board. See comments below.

Article number: 05.71.038	Spacer - Aluminum / Wall thickness = 0.8mm
Length	3.0mm
Material	AlMgSi-0,5
For internal diameter	M2=2.0-2.3
Internal diameter	d = 2.4mm
External diameter	4.0mm
Vogt AG No.	x40030080.10
	L ±0,1

Article number: 07.51.403	Insulating Spacer for M2 Self-gripping *)
Length	3.0mm
Material	Polyamide 6.6
Surface	Black
Internal diameter	2.2mm
External diameter	4.0mm
Flammability rating	UL94-HB
	D L ±0,1

*) 2 spacers are delivered with DSB75 Support Board

Article number: 05.11.209	Threaded Stud M2.5 - M2 Type E / External thread at both ends	
Length	3.0mm	
Material	Stainless steel X12CrMoS17	
Thread 1 / Length	M2.5 / 6.0mm	
Thread 2 / Length	M2 / 8.0mm	
Width across flats	5	
Recess	yes	
Туре	External / External	
	A1 A2 A2 SW	

Article number: 01.14.131	Screw M2 *) DIN 84 - ISO 1207
Length	8.0mm
Material	Steel 4.8
Surface	Zinced A2K
Thread	M2
Head diameter	D = 3.8mm
Head height	1.30mm
Туре	Slotted cheese head screw
	k

^{*) 2} screws are delivered with DSB75 Support Board

Article number: 01.14.141	Screw M2 DIN 84 - ISO 1207
Length	10.0mm
Material	Steel 4.8
Surface	Zinced A2K
Thread	M2
Head diameter	D = 3.8mm
Head height	1.30mm
Туре	Slotted cheese head screw
	N I I I I I I I I I I I I I I I I I I I

Article number: 02.10.011	Hexagon Nut *) DIN 934 - ISO 4032
Material	Steel 4.8
Surface	Zinced A2K
Thread	M2
Wrench size / Ø	4
Thickness / L	1.6mm
Туре	Nut DIN/UNC, DIN934
	M 2,5 SW 5

^{*) 2} nuts are delivered with DSB75 Support Board

9.3 Data Sheets of Recommended Batteries

The following two data sheets have been provided by VARTA Microbattery GmbH.

Click here for sales contacts and further information: http://www.varta-microbattery.com

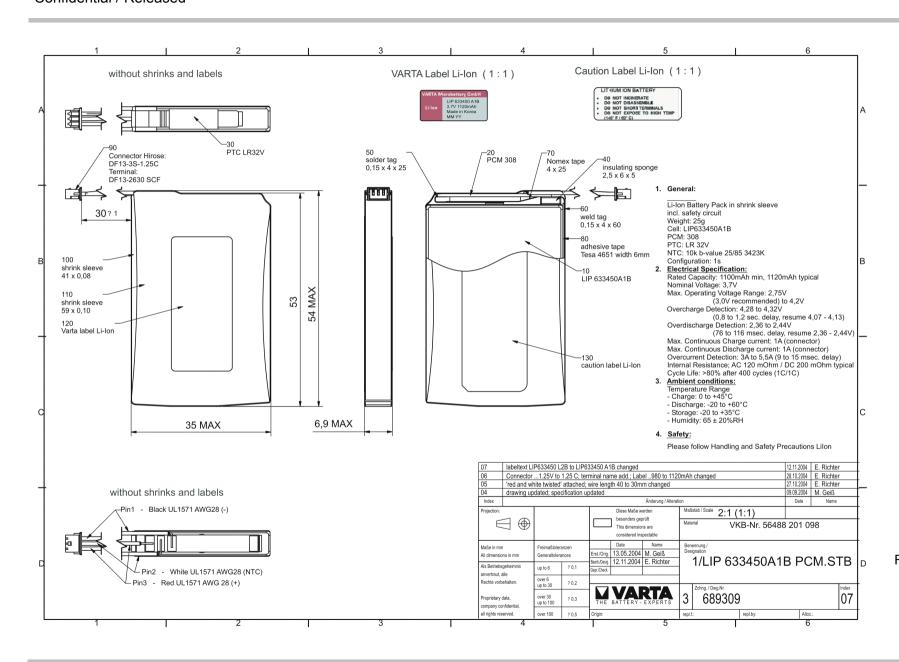


Figure 43: Lithium Ion battery from VARTA

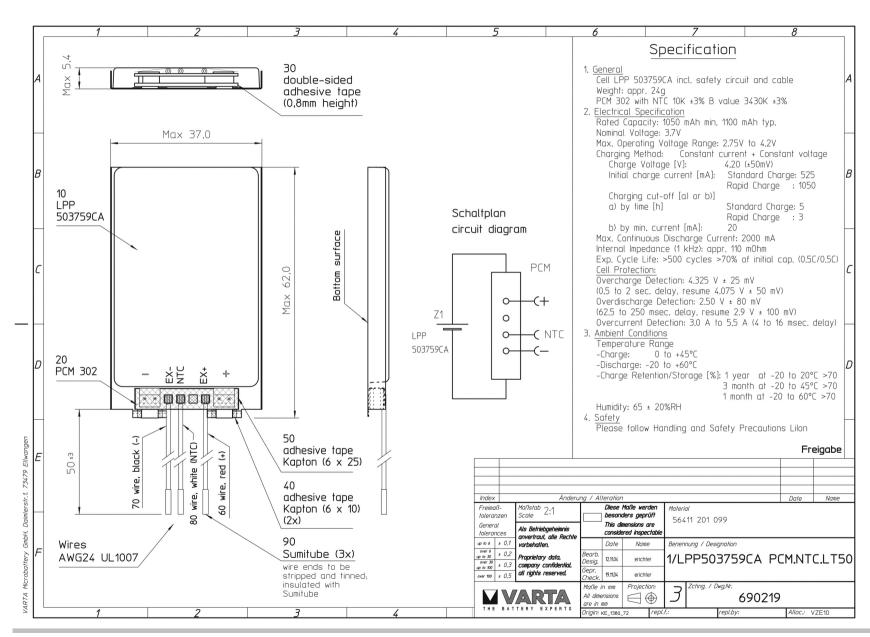


Figure 44: Lithium Polymer battery from VARTA