

Объединение сетей с помощью GRE-туннелей для роутеров iRZ RUH, RUH2, RUH2b, RUH3, RCA

Содержание

1. Введение	4
1.1. Описание документа	4
1.2. Обзор пакета инструкций	4
1.3. Предупреждение	5
2. Примеры конфигурации службы GRE	6
2.1. Организация адресного пространства объединяемых подсетей	6
2.2. Профили службы GRE	7
2.3. Конфигурация «RXX: fixed static IP-address $\leftrightarrow \rightarrow$ RXX: fixed static IP-address»	7
2.3.1. Подготовка к настройке	8
2.3.2. Настройка параметров локальных интерфейсов роутеров	8
2.3.3. Проверка доступности роутеров	8
2.3.4. Проверка доступности роутеров по их внешнему фиксированному IP-адресу	9
2.3.5. Проверка прямой доступности между роутерами через Интернет	9
2.3.6. Настройка GRE-туннеля на роутере №1	11
2.3.7. Настройка GRE-туннеля на роутере №2	12
2.3.8. Нагрузочная проверка возможности создания двунаправленного соединения	13
2.4. Конфигурация «Cisco: static fixed IP-address $\leftrightarrow \rightarrow$ RXX: static fixed IP-address»	15
2.4.1. Подготовка к настройке	15
2.4.2. Настройка параметров локальных интерфейсов роутеров	16
2.4.3. Проверка доступности роутеров	16
2.4.4. Проверка доступности роутера iRZ со стороны роутера Cisco	17
2.4.5. Настройка GRE-туннеля на роутере Cisco	18
2.4.6. Настройка GRE на роутере iRZ RXX	19
2.4.7. Нагрузочная проверка возможности создания двунаправленного соединения	20
3. Контакты и поддержка	. 22

Таблицы

Таблица 2.1. Настройки локальных Ethernet-интерфейсов роутеров	8
Таблица 2.2. Настройки службы GRE для роутера №1	11
Таблица 2.3 . Настройки службы GRE для роутера №2	12
Таблица 2.4. Настройки локальных Ethernet-интерфейсов роутеров	16
Таблица 2.5. Настройки службы GRE для роутера Cisco	19

Рисунки

Рис. 2.1. Схема соединения узлов «роутер – роутер»	7
Рис. 2.2. Схема соединения узлов «Cisco – роутер»	. 15

1. Введение

1.1. Описание документа

Данный документ является частью пакета инструкций по применению роутера iRZ и содержит примеры корректной конфигурации сетевой службы GRE в решениях, построенных на базе роутеров iRZ. Данный документ **не содержит** всей информации по работе с роутером.

Версия документа		Дата публикации		
1.0		14.08.2013		
Подготовлено:	Афанасьев Д.С., Головин В.Н.	Проверено:	Коробань Д.С.	

1.2. Обзор пакета инструкций

Вся документация на русском языке по продукции iRZ доступна на официальном сайте группы компаний «Радиофид» (www.radiofid.ru) в разделе «Поддержка».

Содержание «Пакета инструкций по обслуживанию роутера iRZ»:

- Руководство по эксплуатации роутера iRZ;
- Описание средств управления и мониторинга роутера iRZ;
- Диагностика и методы устранения неисправностей роутера iRZ;
- Руководство по настройке роутера iRZ с помощью USB-накопителя;
- Примеры рабочих конфигураций роутера iRZ:
 - Создание виртуальных сетей и туннелей средствами OpenVPN;
 - Удалённый доступ к СОМ-порту роутера;
 - Защита передаваемых данных средствами IPSec;
 - DynDNS и обход ограничений внешнего динамического IP-адреса;
 - Объединение сетей с помощью GRE-туннелей;
 - Сбоеустойчивость уровня сети средствами VRRP;
 - Обеспечение доступа к внутрисетевым службам средствами PortForwarding;
 - Защита локальной сети и сервисов средствами встроенного Firewall;
- Технические условия (ТУ);
- Протокол температурных испытаний;
- Декларация о соответствии.

1.3. Предупреждение

Отклонение от рекомендованных параметров и настроек может привести к непредсказуемым последствиям и значительным издержкам, как в процессе пуско-наладки вычислительного комплекса, так и во время эксплуатации production-версии вычислительного комплекса в «боевых» условиях.

Внимание! Прежде чем вносить любые изменения в настройки оборудования, устанавливаемого на объекты, настоятельно рекомендуется проверить работоспособность всех параметров новой конфигурации на тестовом стенде. Также, не следует ограничиваться синтетическими тестами, а максимально реалистично воспроизвести условия, в которых будет эксплуатироваться оборудование.

2. Примеры конфигурации службы GRE

В данном разделе приведены примеры конфигураций службы GRE, детально описывающие её функциональные возможности, а также поддерживаемые схемы соединения объединяемых узлов. Для наглядности, в некоторых примерах в качестве оконечного оборудования одной из сторон в схеме подключения был использован роутер **Cisco** класса SMB/SOHO серии **c800**.

Примечание: Описание некоторых процессов подготовки к развертыванию конфигурации (например - *настройка Интернет-подключения на роутере*) уже представлено в других документах пакета документации и выходит за рамки данного документа. Данное описание не включает материалы примеров конфигураций. Для получения рекомендаций по настройке Интернет-соединения на роутере обратитесь к документу «Руководство по эксплуатации роутеров iRZ» (см. раздел «Интернет соединение по GSM-каналу»).

Примечание: Функцию службы GRE-туннеля в роутерах выполняет часть ядра системы. Для применения параметров GRE используется консольная утилита «**ip**».

Заказчик может обратиться в службу технической поддержки или к менеджеру по продажам компании «Радиофид Системы» и сделать запрос отдельной версии прошивки, включающей в себя уникальную конфигурацию службы GRE, решающую задачи заказчика, в случае, если это невозможно сделать средствами стандартной прошивки, представленной на сайте www.radiofid.ru.

2.1. Организация адресного пространства объединяемых подсетей

Прежде чем приступать к настройке службы GRE необходимо переопределить, что адреса объединяемых сетей различны. Если это не так, то адрес одной из сетей необходимо изменить. Настроить IP-адреса в роутерах iRZ можно, обратившись к странице **Configuration** → **LAN** web-интерфейса роутера. Далее, к каждому примеру конфигурации службы GRE будут приложены настройки сетевых интерфейсов.

Примечание: Параметры службы GRE позволяют указать отдельные IP-адреса для оконечных интерфейсов GRE-туннеля. Это позволяет упростить процесс настройки, избежав путаницы, когда объединяемые подсети имеют несколько общих октетов в IP-адресе. Например: сеть 192.168.1.0 с маской 255.255.255.128 (узлы 192.168.1.1 – 192.168.1.127) и сеть 192.168.1.128 с маской 255.255.255.128 (узлы 192.168.1.254).

Таким образом, при формировании конфигурации GRE-туннелей рекомендуется выделить для их интерфейсов отдельные адреса – это «правило хорошего тона», позволяющее избежать путаницы при расчёте и распределении сетевого адресного пространства.

Примечание: Для получения информации о способе настройки IP-адреса локальной подсети (подсетей) на роутере Cisco требуется обратиться к разделу «Configuring a LAN with DHCP and VLANs» официальной документации на сайте Cisco.

2.2. Профили службы GRE

Конфигурирование параметров службы GRE выполняется на странице **Configuration** → **GRE**. Для настройки доступно до 10 одновременно активных профилей.

Страница «**GRE Tunnel Configuration**» позволяет выполнять быстрое включение и отключение профилей через параметр **Create**, избавляя пользователя от необходимости открывать страницу полной конфигурации каждого профиля, тем самым сокращая общее время настройки службы.

Значения параметра **Create**: **yes** – указанный профиль будет активен после нажатия кнопки «Apply» и после каждой загрузки роутера, **no** – не активен ни при каких обстоятельствах.

Получить доступ ко всем параметрам профиля GRE, можно нажав на ссылку «[Edit]», напротив редактируемого профиля.

Групповое сохранение и применение новых настроек выполняется нажатием на кнопку «Apply».

2.3. Конфигурация «RXX: fixed static IP-address $\leftarrow \rightarrow$ RXX: fixed static IP-address»

Данная конфигурация позволяет решить одновременно две задачи:

- прозрачно объединить подсети филиалов, разнесённых территориально;
- 📕 явно обособить пространство туннеля с помощью отдельной адресации его конечных точек.

Для реализации данной конфигурации в обоих роутерах должны быть использованы SIM-карты с внешними фиксированными IP-адресами либо внутренними фиксированными IP-адресами (в случае предоставления оператором сотовой связи услуги по обеспечению связи между устройствами в рамках виртуальной частной сети с выделенным APN).

Ниже приведена схема соединения узлов (рис. 2.1) с описанием процесса применения данной конфигурации на роутере.

Рис. 2.1. Схема соединения узлов «роутер – роутер»

2.3.1. Подготовка к настройке

Процесс подготовки и развертывания данной конфигурации состоит из следующих этапов:

- настройка параметров локальных интерфейсов роутеров;
- настройка и проверка Интернет-подключения на обоих роутерах;
- проверка доступности роутеров:
 - проверка доступности роутеров по их внешнему фиксированному IP-адресу;
 - проверка прямой доступности между роутерами через Интернет;
- настройка GRE-туннеля на роутере №1;
- настройка GRE-туннеля на роутере №2;
- нагрузочная проверка возможности создания двунаправленного соединения.

Для настройки Интернет-подключения следует обратиться к документу «Руководство по эксплуатации роутеров iRZ» (см. раздел «Интернет соединение по GSM-каналу»).

2.3.2. Настройка параметров локальных интерфейсов роутеров

В данном разделе в таблице 2.1 описаны параметры локальных Ethernet-интерфейсов настраиваемых роутеров.

Роутер	Параметр	Значение	Описание
(раздел <u>Primary IP Ac</u>	<u>ldress</u> страницы Conf	ïguration → LAN) web-интер	офейса роутеров
роутер №1	IP Address	192.168.1.1	IP-адрес локального интерфейса
	Subnet Mask	255.255.255.0	Маска обслуживаемой подсети
роутер №2	IP Address	192.168.2.1	IP-адрес локального интерфейса
	Subnet Mask	255.255.255.0	Маска обслуживаемой подсети

Таблица 2.1. Настройки локальных Ethernet-интерфейсов роутеров

2.3.3. Проверка доступности роутеров

Прежде чем переходить непосредственно к настройке службы GRE на роутерах, необходимо убедиться в их доступности из сети Интернет, а также по отношению друг к другу. Это требуется для сокращения времени устранения проблем при создании GRE-соединения на ранней стадии развертывания решения.

2.3.4. Проверка доступности роутеров по их внешнему фиксированному IP-адресу

После того, как на роутере настроено интернет-подключение, требуется выполнить проверку доступности устройства из сети Интернет. В случае неверной настройки параметров подключения есть вероятность успешного выхода роутера в сеть Интернет, однако доступность устройства при этом не может быть гарантирована.

Предупреждение: Выполнять данную проверку при помощи программы **ping** не рекомендуется, т.к. полученные в ответ ICMP-пакеты не будут свидетельствовать о том, что они были отправлены именно настраиваемым роутером, а не неизвестным устройством, обладающим проверяемым IP-адресом (это возможно в случае некорректной конфигурации интернет-подключения на роутере iRZ).

Для выполнения проверки доступности обоих настраиваемых роутеров выполните следующие действия:

- Включите на каждом роутере любую из служб удалённого доступа; (для роутера производства iRZ - можно обратиться к разделу «Настройка удалённого доступа» документа «Описание средств управления роутером iRZ»)
- 2. Откройте интернет-браузер, либо командую консоль;
- 3. Осуществите попытку получения доступа к устройствам через сеть Интернет.

Рекомендация: Если при включении удаленного доступа реквизиты (имя пользователя и пароль) не были изменены, рекомендуется убедиться, что проверяемый IP-адрес принадлежит именно настраиваемому роутеру. Проверьте уникальную информацию – строку **UNIT NAME** или настройки локальной сети и сетевых служб.

2.3.5. Проверка прямой доступности между роутерами через Интернет

После проверки доступности роутеров по их фиксированному IP-адресу следует убедиться в доступности роутеров в отношении друг друга.

После выполнения проверки доступности роутера №2 в отношении роутера №1, также требуется выполнить обратную проверку доступности роутера №1 в отношении роутера №2. В случае, если оба роутера являются моделями серии iRZ RXX – процедура проверки аналогична для обоих направлений.

Предупреждение: Для Северо-Западного региона России характерна невозможность установления связи между роутерами, когда на обоих устройствах используются SIM-карты одного и того же оператора сотовой связи – «Мегафон» или «МТС» (независимо от используемого тарифа и подключённых услуг, в т.ч. «Фиксированный IP-адрес» у «Мегафон», или «Реальный IP» у «МТС»). Поэтому перед заключением договора на предоставление телематических услуг с оператором, рекомендуется провести ряд тестов на возможность осуществления связи между устройствами, использующими SIM-карты данного оператора. Данное ограничение недействительно для случаев использования выделенного АРN.

Для выполнения проверки доступности роутера №2 в отношении роутера №1 необходимо:

- 1. Включите роутер №2 и подключите его к компьютеру; (с помощью «crossover»-патчкорда)
- 2. Откройте интернет-браузер;

(«Рабочий стол» \rightarrow «Opera», либо «Internet Explorer», «Firefox», «Chrome» и пр.)

- Введите в адресную строку локальный IP-адрес роутера №2; (в данной конфигурации: 192.168.2.1)
- Откройте страницу статуса интернет-соединения; (Status and log → Internet)
- 5. После подключения роутера №2 к сети Интернет, запишите его внешний IP-адрес;
- Отключите роутер №2 от компьютера; (сохранив коммутацию с сетью питания и GSM/3G-антенной)
- Подключите к компьютеру роутер №1; (с помощью «crossover»-патчкорда)
- 8. На компьютере вернитесь к окну интернет-браузера;
- Введите в адресную строку локальный IP-адрес роутера №1; (в данной конфигурации: 192.168.1.1)
- 10. Откройте страницу проверки соединения «Ping Test»;

(Administration \rightarrow Ping Test)

- **11.** Напротив надписи «Ping Address/URL» введите внешний IP-адрес роутера №2; (в данной конфигурации: 2.2.2.2)
- 12. Нажмите [Enter]
- 13. Подождите некоторое время до загрузки страницы;

Сообщение страницы должно содержать информацию, подобную приведённой в листинге 1.

Листинг 1	
PING 2.2.2.2 (2.2.2.2): 56 data bytes 64 bytes from 2.2.2.2: seq=0 ttl=64 time=4.822 m 64 bytes from 2.2.2.2: seq=1 ttl=64 time=1.098 m 64 bytes from 2.2.2.2: seq=2 ttl=64 time=0.976 m	ms ms

2.3.6. Настройка GRE-туннеля на роутере №1

В данном разделе описаны параметры службы GRE, настраиваемые в данной конфигурации, и пояснены их значения.

Примечание: Перед настройкой службы GRE необходимо убедиться в отсутствии запрещающих правил сетевого экрана роутера; в заводских настройках роутера служба сетевого экрана выключена.

Название параметра	Значение в данной конфигурации	Описание
Create GRE tunnel #[N]	[включено]	Определяет будет ли использован данный профиль после каждой загрузки устройства
Description	[fixed-ip-to-fixed-ip]	Краткое описание/название профиля (допустимо использование только латинских символов)
Remote External IP Address	2.2.2.2	Внешний фиксированный IP-адрес роутера №2
<u>Remote Subnet</u>	192.168.2.0	IP-адрес подсети, обслуживаемой удалённым роутером №2. С данной подсетью будет обеспечена возможность обмениваться данными из локальной подсети настраиваемого роутера №1
Remote Subnet Mask	255.255.255.0	Маска подсети, обслуживаемой удалённым роутером №2
Local Internal IP Address	10.1.0.1	IP-адрес локальной точки GRE-туннеля
Remote Internal IP Address	10.1.0.2	IP-адрес удалённой точки GRE-туннеля
Tunnel Mask	255.255.255.0	Маска подсети GRE-туннеля
Tunnel MTU	*	Максимальный размер кадра в канальном уровне (в байтах)

Таблица 2.2. Настройки службы GRE для роутера №1

Примечание: Рекомендуется не задавать параметр Tunnel MTU, если данные передаются без задержек и повреждений. В противном случае необходимо выяснить минимальный MTU канала и установить Tunnel MTU меньшим либо равным ему.

2.3.7. Настройка GRE-туннеля на роутере №2

Настройка роутера №2 выполняется способом, аналогичным процессу настройки роутера №1, с единственным исключением, описанным в следующем параграфе.

Значения параметров <u>Tunnel Mask</u> и <u>Tunnel MTU</u> профиля роутера №2 должны быть идентичны значениям этих же параметров в профиле роутера №1. IP-адрес конечной точки туннеля роутера №2 должен находиться в адресном пространстве туннеля (рассчитывается исходя их параметров IP-адреса конечной точки туннеля роутера №1 и маски подсети туннеля).

Таким образом, конфигурация роутера №2 должна выглядить так, как представлена в таблице 2.3.

Название параметра	Значение в данной конфигурации	Описание
Create GRE tunnel #[N]	[включено]	Определяет будет ли использован данный профиль после каждой загрузки устройства
Description	[fixed-ip-to-fixed-ip]	Краткое описание/название профиля (допустимо использование только латинских символов)
Remote External IP Address	1.1.1.1	Внешний фиксированный IP-адрес роутера №2
Remote Subnet	192.168.1.0	IP-адрес подсети, обслуживаемой удалённым роутером №2. С данной подсетью будет обеспечена возможность обмениваться данными из локальной подсети настраиваемого роутера №1
Remote Subnet Mask	255.255.255.0	Маска подсети, обслуживаемой удалённым роутером №2
Local Internal IP Address	10.1.0.2	IP-адрес локальной точки GRE-туннеля
Remote Internal IP Address	10.1.0.1	IP-адрес удалённой точки GRE-туннеля
Tunnel Mask	255.255.255.0	Маска подсети GRE-туннеля
Tunnel MTU	*	Максимальный размер кадра в канальном уровне (в байтах) Указывать данный параметр не обязательно. Порядок расчёта значения данного параметра приведён в документе «Диагностика и устранение неисправностей»

Таблица 2.3. Настройки службы GRE для роутера №2

2.3.8. Нагрузочная проверка возможности создания двунаправленного соединения

Для подтверждения работоспособности данной конфигурации необходимо осуществить передачу полезной информации между подсетями, обслуживаемыми роутерами в обоих направлениях. Для проверки доступности подсети, обслуживаемой роутером №2 из подсети, обслуживаемой роутером №1 требуется выполнить следующие действия:

- 1. Включите роутер №1 и подключите его к компьютеру;
- 2. Откройте интернет-браузер; («Рабочий стол» → «Орега», либо «Internet Explorer», «Firefox», «Chrome» и пр.)
- 3. Введите в адресную строку локальный IP-адрес роутера №1; (В данной конфигурации: 192.168.1.1)
- 4. Дождитесь установки Интернет-соединения;
- Откройте страницу проверки соединения «Ping Test»; (Administration → Ping Test)
- 6. Напротив надписи «Ping Address/URL» введите локальный IP-адрес роутера №2; (В данной конфигурации: 192.168.2.1)
- 7. Нажмите [Enter]
- 8. Подождите некоторое время до загрузки страницы;

Сообщение страницы должно содержать информацию, подобную приведённой в листинге 3.

Листинг 3	
PING 192.168.2.1 (192.168.2.1): 56 data bytes 64 bytes from 192.168.2.1: seq=0 ttl=64 time=4.822 ms 64 bytes from 192.168.2.1: seq=1 ttl=64 time=1.098 ms 64 bytes from 192.168.2.1: seq=2 ttl=64 time=0.976 ms	5

Для выполнения проверки связи с роутером №1 со стороны роутера №2 следует выполнить действия, аналогичные описанным выше (раздел 2.3.5):

- 1. Включите роутер №2 и подключите его к компьютеру;
- 2. Откройте интернет-браузер;

(«Рабочий стол» \rightarrow «Opera», либо «Internet Explorer», «Firefox», «Chrome»)

- Введите в адресную строку локальный IP-адрес роутера №2; (В данной конфигурации: 192.168.2.1)
- Откройте страницу проверки соединения «Ping Test»;

(Administration \rightarrow Ping Test)

- 5. Напротив надписи «Ping Address/URL» введите локальный IP-адрес роутера №1; (В данной конфигурации: 192.168.1.1)
- 6. Нажмите [Enter]
- 7. Подождите некоторое время до загрузки страницы;

Сообщение страницы должно содержать информацию, подобную приведённой в листинге 4.

_							
п	14	0	7 1	14		.	•
	И	L.		И	п		4

PING 192.168.1.1 (192.168.1.1): 56 data bytes 64 bytes from 192.168.1.1: seq=0 ttl=64 time=4.822 ms 64 bytes from 192.168.1.1: seq=1 ttl=64 time=1.098 ms 64 bytes from 192.168.1.1: seq=2 ttl=64 time=0.976 ms	

Рекомендация! Если сообщения на странице «Ping test» после нажатия кнопки «Ping» так и не появились, необходимо убедиться, что:

- **1.** локальный IP-адрес каждого роутера находится в пределах адресного пространства обслуживаемой им сети;
- 2. отсутствуют запрещающие правила сетевого экрана роутера, блокирующие работу службы GRE;
- качество GSM/3G-сигнала должно соответствует приемлемому уровню исходя из значений таблицы «Градации уровня сигнала» документа «Руководство по эксплуатации роутеров iRZ»;
- **4.** пропускная способность канала оператора связи не менее 64 кбит/с и оператор связи не блокирует работу протоколов службы GRE.

После того, как все проверки пройдены, можно приступать непосредственно к построению решения на базе службы GRE.

Рекомендация: Если одна или несколько проверок не увенчались успехом, а также если возникли проблемы в ходе эксплуатации развернутой конфигурации рекомендуется обратиться к документу «Диагностика и методы устранения неисправностей роутеров iRZ» за рекомендациями по разрешению возникшей проблемы.

2.4. Конфигурация «Cisco: static fixed IP-address ←→ RXX: static fixed IP-address»

Данная конфигурация позволяет решить одновременно две задачи:

- прозрачно объединить подсети филиалов, разнесённых территориально;
- явно выделить пространство туннеля с помощью обособленной адресации его конечных точек.

Для реализации данной конфигурации в обоих роутерах должны быть использованы SIM-карты с внешними фиксированными IP-адресами, либо внутренними фиксированными IP-адресами (в случае предоставления оператором сотовой связи услуги по обеспечению связи между устройствами в рамках виртуальной частной сети с выделенным APN).

Ниже приведена схема соединения узлов (рис. 2.2) с описанием процесса применения данной конфигурации на роутере.

Рис. 2.2. Схема соединения узлов «Сівсо – роутер»

2.4.1. Подготовка к настройке

Процесс подготовки и развертывания данной конфигурации состоит из следующих этапов:

- настройка параметров локальных интерфейсов роутеров;
- настройка и проверка Интернет-подключения на роутере iRZ;
- проверка доступности роутеров:
 - проверка роутеров по их внешнему фиксированному IP-адресу;
 - проверка доступности роутера Cisco со стороны роутера iRZ RXX;
 - проверка доступности роутера iRZ RXX со стороны роутера Cisco;
- настройка GRE-туннеля на роутере Cisco;
- настройка GRE-туннеля на роутере iRZ RXX;
- нагрузочная проверка возможности создания двунаправленного зашифрованного соединения.

Для настройки Интернет-подключения роутера iRZ RXX следует обратиться к документу «Руководство

по эксплуатации роутеров iRZ» (см. раздел «Интернет соединение по GSM-каналу»).

Для настройки Интернет-подключения на роутере Cisco следует обратиться к официальному Интернетресурсу компании-производителя – http://www.cisco.com/cisco/web/RU/support/index.html.

2.4.2. Настройка параметров локальных интерфейсов роутеров

В данном разделе в таблице 2.4 описаны параметры локальных Ethernet-интерфейсов настраиваемых роутеров.

Роутер	Параметр	Значение	
роутер Cisco	Настройки параметров локального интерфейса роутера Cisco должны быть сформированы на основе справочных материалов , представленных на официальном сайте Cisco. В данной конфигурации IP-адрес локального интерфейса Cisco имеет значение: 192.168.2.1 , маска подсети – 255.255.255.0		
роутер iRZ RXX	(раздел <u>Primary IP Address</u> страницы Configuration → LAN) роутера iRZ RXX		
	IP Address 192.168.1.1		
	Subnet Mask	255.255.255.0	

Таблица 2.4. Настройки Ethernet-интерфейсов роутеров

2.4.3. Проверка доступности роутеров

Прежде чем переходить непосредственно к настройке службы GRE на роутерах необходимо убедиться в их доступности из сети Интернет, а также по отношению друг к другу. Это требуется для сокращения времени устранения проблем при создании GRE-соединения на ранней стадии развертывания решения.

Проверка доступности роутеров по их внешнему фиксированному IP-адресу должна быть выполнена по методу, описанному в разделе «Проверка доступности роутеров по их внешнему фиксированному IP-адресу». Проверка доступности роутера Cisco со стороны роутера iRZ RXX должна быть выполнена по методу, описанному в разделе «Проверка прямой доступности между роутерами через Интернет».

2.4.4. Проверка доступности роутера iRZ со стороны роутера Cisco

Для выполнения проверки доступности роутера iRZ со стороны роутера Cisco необходимо выполнить следующие действия:

Примечание: На момент данной проверки Интернет-подключение на роутере Cisco должно быть настроено и проверено.

- 1. Включите роутер iRZ RXX и подключите его к компьютеру; (с помощью «crossover»-патчкорда)
- 2. Откройте интернет-браузер;

(«Рабочий стол» \rightarrow «Opera», либо «Internet Explorer», «Firefox», «Chrome» и пр.)

- **3.** Введите в адресную строку локальный IP-адрес роутера iRZ RXX; (В данной конфигурации: 192.168.1.1)
- Откройте страницу статуса интернет-соединения; (Status and log → Internet)
- 5. После подключения роутера iRZ RXX к Интернету, запишите его внешний IP-адрес;
- Отключите роутер iRZ RXX от компьютера; (сохранив коммутацию с сетью питания и GSM/3G-антенной)
- Включите роутер Cisco и подключите его к компьютеру; (с помощью «crossover»-патчкорда, либо кабеля Cisco «COM» → «AUX»)
- 8. Подключите к роутеру Cisco удалённо, через Telnet, либо через COM-порт; (с помощью программы «PuTTY», либо «HyperTerminal»)
- Дождитесь приглашения консоли управления Cisco; (как правило, приглашение содержит строку: « [имя_роутера]>_ »)
- **10.** Введите команду: «ping [*внешний фиксированный IP-адрес роутера iRZ RXX*]»; (В данной конфигурации: «ping 2.2.2.2»)
- 11. Нажмите [Enter]
- 12. Подождите некоторое время до конца выполнения команды PING.

Сообщение страницы должно содержать информацию, подобную приведённой в листинге 5.

Листинг 5

```
User Access Verification

Password:

Router>ping 2.2.2.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 2.2.2.2, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 120/124/140 ms

Router>
```

Показателем проверки, в данном случае, будет наличие и количество символов «!» (восклицательного знака) после ввода команды «**ping**».

Полное либо частичное отсутствие (менее 5) этих знаков говорит о том, что проверка завершилась неудачей. В данной ситуации для разрешения проблемы рекомендуется обратиться к документу «Диагностика и методы устранения неисправностей роутера iRZ», раздел «Служба GRE».

2.4.5. Настройка GRE-туннеля на роутере Cisco

Далее приведён сценарий автоматической настройки (листинг 6), реализующий конфигурацию роутера Сізсо в полуавтоматическом режиме (отсутствует необходимость ручного ввода каждой команды, сценарий применяется копированием его текста в консоль управления Cisco).

ВНИМАНИЕ! Данный пример может быть непосредственно применён только на моделях серии **с800**. Для применения данного сценария на других моделях Cisco рекомендуется ознакомиться с возможными изменениями в синтаксисе интерфейса управления роутерами других серий.

ВНИМАНИЕ! Применение данного сценария может повлечь за собой **порчу**, **модификацию**, либо необратимую **потерю** критичной конфигурационной информации роутера заказчика. Перед применением данного сценария на рабочем роутере Cisco настоятельно рекомендуется ознакомление с его конфигурационными директивами и замена значений параметров из данного примера на актуальные для развёртываемой конфигурации.

Перед применением сценария на роутере Cisco необходимо войти в режим администрирования устройством. Для этого требуется ввести команду «enable», затем нажать [Enter] и ввести пароль доступа к уровню администрирования устройством. Далее можно вставить текст сценария конфигурации в окно консоли управления.

Примечание: В программе PuTTY вставка текста из буфера осуществляется нажатием правой кнопки мыши. В консольной программе telnet вставка осуществляется нажатием правой кнопки мыши и выбором пункта «Вставить» в контекстном меню.

Листинг 6	
<pre>conf t !GRE interface Tunnel1 ip address 10.1.0.2 255.255.255.0</pre>	—————————————————————————————————————
exi exi wr !	

Таблица 2.5 содержит описание использованных директив конфигурации Cisco в сценарии листинга 6

Название параметра Значение в данной Описание конфигурации интерфейс туннеля Tunnel1 Создает виртуальный туннель в сетевой подсистеме роутера Cisco и определяет его имя виртуальный IP-интерфейс 10.1.0.2 IP-адрес, определяемый отдельно для виртуального туннеля внешний ІР-интерфейс FastEthernet4 Имя WAN-интерфейса (внешнего интерфейса) роутера, который будет использоваться для обработки входящих и исходящих подключений при создании GRE-туннеля IP-адрес роутера iRZ RXX 2.2.2.2 Определяет IP-адрес роутера iRZ RXX

Таблица 2.5. Настройки службы GRE для роутера Cisco

Примечание: На роутерах Сізсо не требуется задавать явные разрешающие правила для обеспечения прохождения GRE-трафика до их внутренней сетевой подсистемы. Данные правила могут потребоваться только в случае использования в вычислительном комплексе заказчика вышестоящего сетевого экрана.

2.4.6. Настройка GRE на роутере iRZ RXX

Настройка службы GRE на роутере должна быть выполнена по методу, описанному в разделе «Настройка GRE-туннеля на роутере №1», за исключением параметров Local Subnet и Remote Subnet службы GRE и параметров локального интерфейса. Значения этих параметров в данной конфигурации для роутера iRZ RXX изменены на следующие:

- Remote Subnet \rightarrow 192.168.1.0
- **Local Subnet** \rightarrow 192.168.2.0
- Параметры обслуживаемой подсети:
 - IP-адрес локального интерфейса → 192.168.2.1
 - IP-адрес обслуживаемой роутером iRZ RXX подсети → 192.168.2.0 255.255.255.0

2.4.7. Нагрузочная проверка возможности создания двунаправленного соединения

Для подтверждения работоспособности данной конфигурации необходимо осуществить передачу полезной информации между подсетями, обслуживаемыми роутерами, в обоих направлениях.

Для проверки доступности подсети, обслуживаемой роутером Cisco, из подсети, обслуживаемой роутером iRZ RXX, выполните следующие действия:

- 1. Включите роутер iRZ RXX и подключите его к компьютеру;
- 2. Откройте командную строку Windows;
- 3. Введите команду: «telnet 192.168.2.1»;
- 4. Введите имя пользователя и пароль доступа к роутеру iRZ RXX;
- 5. Дождитесь появления строки приглашения консоли: «# _»;
- 6. Введите команду: «ping 192.168.1.1 I 192.168.2.1»

(в параметре «-I» использована заглавная буква «I»);

- 7. Нажмите [Enter]
- 8. Подождите некоторое время до загрузки страницы.

Сообщение страницы должно содержать информацию, подобную приведённой в листинге 7.

Листинг 7	
PING 192.168.1.1 (192.168.2. 64 bytes from 192.168.2.1: s 64 bytes from 192.168.2.1: s 64 bytes from 192.168.2.1: s 	1): 56 data bytes seq=0 ttl=64 time=4.822 ms seq=1 ttl=64 time=1.098 ms seq=2 ttl=64 time=0.976 ms

Для проверки доступности подсети, обслуживаемой роутером iRZ RXX, из подсети, обслуживаемой роутером Cisco, выполните следующие действия:

- 1. Подключитесь к роутеру Cisco удалённо через Telnet, либо через COM-порт; (с помощью программы «PuTTY», либо «HyperTerminal»)
- **2.** Дождитесь приглашения консоли управления Cisco;

(как правило, приглашение содержит строку: « [имя_роутера]>_ »)

3. Введите команду:

«ping [IP внутреннего интерфейса iRZ RXX] source [IP внутреннего интерфейса Cisco]»:

(В данной конфигурации: «ping 192.168.1.1 source 192.168.2.1»)

- 4. Нажмите [Enter]
- 5. Подождите некоторое время до окончания выполнения команды.

Сообщение страницы должно содержать информацию, подобную приведённой в листинге 8

Листинг 8
Router>ping 192.168.1.1 source 192.168.2.1
Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 192.168.1.1, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 120/124/140 ms Router>

Показателем проверки в данном случае будет наличие и количество символов «!» (восклицательного знака) после ввода команды «**ping**».

Полное либо частичное отсутствие (менее 5) этих знаков говорит о том, что проверка завершилась неудачей. В данной ситуации для разрешения проблемы рекомендуется обратиться к документу «Диагностика и методы устранения неисправностей роутера iRZ», раздел «Служба GRE».